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Abstract

Water has many aesthetic properties that can have a strong impact on our perceptions.
For instance, coffee can bring a feeling of liveliness, rain drops on a window may spark
nostalgia, morning dew on a leaf can suggest freshness, and melting icicles remind us of
spring. The ubiquity of water and the complexity of phenomena it can exhibit makes it an
important and interesting topic for simulation in computer graphics, where the focus lies in
visual aesthetics.

Our focus is to produce a method for simulating water droplets at scales where surface
tension effects are visually significant. These are precisely the scales in the scenarios
mentioned above. We propose a simple new approach to simulating water-like liquids
with visible surface tension effects in two dimensions. We employ a recently developed
Mimetic Finite Difference (MFD) method to solve the Poisson problem, which enforces
incompressibility in the incompressible Euler equations. Using a cut-cell discretization, the
MFD method allows us to extend the ubiquitous finite difference method on a Marker-and-
Cell (MAC) discretization to handle irregular boundaries. To produce surface tension effects,
we keep track of an explicit Lagrangian surface that conforms exactly to the simulation
mesh. To achieve stable results, we adapt a semi-implicit surface tension scheme [Misztal
et al., 2012] to our MFD pressure solve, which allows us to use time steps about 2-3 times
larger than the corresponding explicit method. In addition, the semi-implicit method is
extended to simulate liquids in contact with hydrophobic and hydrophilic surfaces. To
provide stable surface tracking, we employ a method based on marching square templates
[Rocchini et al., 2001; Müller, 2009] augmented by two simple techniques for improving
mesh quality. Collapsing small interior grid edges near the fluid surface eliminates triangle
elements with small angles near the liquid surface. Eliminating cells with small angles
gives a better bound on the conditioning of the discrete Laplacian used in the Poisson
solve, hence adding stability to our simulation. To compute surface tension forces, we
use a version of the surface mesh that has been perturbed to reduce the number of short
edges, in order to more robustly estimate surface curvature. These are essential for stability
when coupling the MFD solve with surface tension forces. Our approach employs a unique
combination of methods to address the problem of accurately tracking the contact between
liquid and solid surfaces. We propose a method that couples well with the majority of fluid
simulators used in the visual effects industry, while introducing a stable surface tension
technique that doesn’t require complex auxiliary meshing strategies [Zheng et al., 2015].
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Nomenclature

The following are commonly occurring symbols used throughout this thesis. Units are
omitted in dimensionless quantities.

∆t Time step, s

∆x Size of one grid cell (width and/or height), m

ν Kinematic viscosity coefficient, m2 s−1

ρ Density, kg m−3

~f Acceleration due to external forces, m s−2

~f1, ~f2 Constituents of the external acceleration ~f = ~f1 + ~f2, m s−2

~fst Force of surface tension

~g Gravitational acceleration, m s−2

~u Velocity, m s−1

~u∗ Intermediate velocity after advection, m s−1

~u∗∗ Intermediate velocity after advection and body forces, m s−1

p Pressure, Pa

t Time, s
D~u
Dt

Total derivative of velocity with respect to time

∇ Continuous gradient operator
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∇· Continuous divergence operator

ΓD Part of the liquid boundary subject to Dirichlet boundary condition

ΓN Part of the liquid boundary subject to Neumann boundary condition

n̂ Outward normal unit vector

Ω Liquid domain

∂Ω Liquid domain boundary

fD Function defining the pressure on the liquid-air boundary for the Dirichlet boundary
condition

fN Function defining the velocity normal to the liquid-solid boundary for the Neumann
boundary condition

e, c Symbols used to represent mesh edges and cells respectively

n,m Symbols used to represent distinct mesh nodes

NC Number of cells on the discrete mesh

NE Number of edges on the discrete mesh

NV Number of nodes on the discrete mesh

NSV Number of surface vertices, which correspond to nodes on the surface of the discrete
mesh

p Stacked vector in RNV of pressure samples

u Stacked vector of velocity samples in RNE tangential to mesh edges

u∗∗ Stacked vector of intermediate velocity samples in RNE discretizing the continuous
velocity field ~u∗∗

λ Scaled pressure acting as a Lagrange multiplier, equivalent to ∆tp

D Discrete divergence operator

G Discrete gradient operator

xiv



ME,M Edge-based discrete inner product matrix on RNE

MV Node-based discrete inner product matrix on RNV

D̃ Simplified discrete divergence operator synonymous to G>ME
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Chapter 1

Introduction

Water is an essential part of life on Earth. It is all around us; we interact with it every day,
from the coffee we drink in the morning, to the warm bath we take to comfort us from the
daily grind. It is also found as a main component in most liquid substances we see on a daily
basis. For example, blood, sweat, milk, juice, are all mainly composed of water. It is no
wonder why simulating water-like liquids is such an important topic in computer graphics.
Mathematically, common fluids are typically described by the Navier-Stokes equations.
However, water-like liquids are typically highly incompressible and possess relatively low
viscosity and constant density. This allows for a simpler model using the incompressible
Euler equations instead. This model has been thoroughly studied and widely used in the
field of computational fluid dynamics for scientific and engineering purposes as well as
computer graphics for physically-based animation. In science and engineering, fidelity of
internal fluid quantities (e.g. temperature and pressure) is vitally important and fluids are
typically studied in closed systems. In computer graphics, however, the focus is on the
aesthetics of the fluid and how it looks on the surface. As a result more computational
focus is put towards the dynamics on the surface than the internal mechanics of a fluid.
Therefore, the methods employed in science and engineering are not always suitable for
computer graphics purposes. This motivates the research of new simulation methods with
a focus on visual aesthetics.

One visually interesting property of water is surface tension, which is especially visible
at small scales, like on water droplets. This effect is particularly important because it
characterizes the shape of a droplet resting on a solid surface. We can observe water droplets
in a variety of settings like morning dew on leaves, condensation on a cool bottle, or rain
droplets on a window.
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Consider a water droplet floating in the air. In this scenario, surface tension is an inward
force per unit area on the liquid surface. This force has the effect of minimizing the surface
area of the droplet. More precisely, it is caused by the imbalance of adhesive forces between
water and air molecules, and cohesive forces between water molecules alone. Specifically,
cohesive forces overpower adhesive forces, causing the interior water molecules to pull

Figure 1.1: Imbalance of at-
tractive forces on a liquid sur-
face.

the surface inwards as in Figure 1.1. Of course, it is uncommon
to see a droplet suspended in the air for a long period of time.
Due to gravity, the liquid water we typically see, rests on a
solid surface. In this setting, the force of surface tension can
cause the liquid to spread along a solid boundary, or repel the
liquid away, characterizing “hydrophilic” and “hydrophobic”
materials respectively. This phenomenon can only be seen
where the boundaries of three or more materials intersect,
forming a contact curve1. In our case, the materials are water,
solid and air.

Our work focuses on the core of simulating liquids to allow
for a straightforward inclusion of surface tension effects and an
accurate boundary representation, especially near the contact
curve. We aim to develop a framework that extends the
dominant family of grid based simulation schemes in computer graphics, to allow existing
implementations to benefit directly from our contributions.

1.1 Related Work

The majority of the methods for simulating liquids can be categorized as Lagrangian, where
the discretization moves with the liquid, or Eulerian, where the discretization is stationary
with respect to a moving liquid. The two most notable Lagrangian methods can be further
split into particle methods such as Smoothed Particle Hydrodynamics (SPH), e.g. [Ihmsen
et al., 2014b] where the fluid equations are solved directly on disconnected particles, and
mesh methods using the finite element (FE) method or the like, e.g. [Clausen et al., 2013].
However, the majority of modern fluid simulators used in the computer graphics industry
(e.g., [Autodesk, 2015; SideFX, 2015]) use Eulerian grid-based methods, or hybrids between
Eulerian and Lagrangian approaches, in favour of purely Lagrangian methods. This is the
main reason we chose to extend the Eulerian approach in our work. Eulerian schemes are

1 In two dimensions we call this a contact point.
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particularly simple, easy to implement, and efficient; they can even be used to improve
existing SPH simulators [Cornelis et al., 2014]. At the core of a standard Eulerian grid-based
method lies a regular grid (or sometimes an octree) that stores pressure values at cell centers
and velocity components between pressure values (see Figure 3.3b for an example of the
staggered marker-and-cell (MAC) discretization [Harlow et al., 1965]). This discretization
is used to solve for incompressibility in the Euler equations using a finite difference (FD)
scheme, and is often referred to as the pressure projection step. Other Eulerian methods
typically involve the finite volume (FV) method, which generalizes the MAC grid with
FD to more complex meshes with certain orthogonality constraints. Unfortunately, the
accuracy of the basic FV method is restricted to cells with faces orthogonal to the line
connecting the face and cell centroids. Since our discretization includes cells that violate
this orthogonality constraint we seek an alternative method that ultimately reduce to the
MAC grid with FD on the interior of the mesh while supporting more general cell geometries
near boundaries. More background on our choice of method to solve for pressure projection
is found in Chapter 3.

In addition to solving for incompressibility, a fluid solver also needs a means to advect2

the velocity field as well as the fluid geometry itself, which can be in the form of particles, a
mesh or an implicit function sampled on a grid. Among Eulerian methods, there are a variety
of approaches for velocity advection, but the most dominant in industry are Lagrangian
particle advection schemes. The particle-in-cell (PIC) method [Harlow, 1963] was the first
to introduce marker particles to identify the domain of the fluid, which allowed particles to
perform velocity advection in a Lagrangian manner by interpolating velocities between the
particles and the grid. This frequent interpolation caused crippling numerical dissipation3,
which hindered the method’s popularity. Thus to reduce the dissipation artifact, Zhu
and Bridson [2005] introduced the fluid-implicit particle (FLIP) method to the computer
graphics community. This method interpolates velocity differences instead of whole velocity
components. As a result, the visible dissipation artifacts of PIC are eliminated at the cost of
introducing a slight noise instability that can be reduced by blending between PIC and FLIP
interpolation methods. In the most recent iteration, Jiang et al. [2015] improved on the
PIC/FLIP method by correcting the transfer of velocity information between particle and
grid in a more physically accurate manner that conserves angular momentum. Ubiquity of
these methods motivates a scheme that couples well with particle-based velocity advection.
However, since our work is not focused on velocity advection schemes we employ a simpler

2Advection refers to the transfer of an internal fluid quantity like temperature, position or even velocity
itself through the velocity field. This is defined more precisely in Chapter 2.

3Numerical dissipation refers to artificial smoothing of the discrete velocity in the spatial domain as a
side effect of interpolation.
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semi-Lagrangian scheme [Stam, 1999] in our simulations, which we describe in the next
chapter. We emphasize that because particle advection is usually decoupled from the main
incompressibility solve, we are not limiting our solution to the specific velocity advection
method. In fact, since our choice of advection uses the standard simulation grid, it is
immediate to extend our solver to use a particle advection method.

Particle methods can also be used to propagate the body of the fluid through the
simulation grid. However, moving the body of the fluid can be achieved with other methods,
completely decoupled from velocity advection. For instance, in liquid simulations, what we
typically see is the liquid surface. This suggests that it is sufficient to employ a scheme to
track the surface geometry of the liquid for each time step achieving animation. Indeed,
many methods for surface tracking have been developed for this very purpose. Notably
the work by Brochu and Bridson [2009] introduced a robust grid-free surface tracker
called El Topo that resolves topology changes while maintaining a high quality triangle
mesh. Following, a method, introduced recently [Chentanez et al., 2015], improved on
the performance of El Topo albeit at the cost of permitting some overlapping geometry.
Other surface tracking methods rely on a regular grid and marching squares (cubes in 3D)
templates to reconstruct the evolving Lagrangian surface to resolve topological changes
[Wojtan et al., 2009]. We follow a similar grid-based method [Müller, 2009] that reconstructs
the surface when potential self-intersections are detected. In fact, to simplify the algorithm,
we reconstruct the surface at every time step using only the core marching squares templates,
ignoring special case geometries on the interior of cells. We use a simple clipping technique
to resolve features where the liquid meets the solid as described in Chapter 5.

Finally we aim to model the effects of surface tension. Much work has been done to
model surface tension forces using explicit time integration. Earlier work focused on a level-
set based surface representation [Enright et al., 2003; Losasso et al., 2004], with additional
work focused on specific phenomena such as contact angles [Wang et al., 2005] and bubbles
[Hong and Kim, 2005]. More recently, more attention was given to explicit surface meshes
in universal solvers [Clausen et al., 2013] that can model hydrophobic surfaces, or solvers
targeted at specific phenomena like droplet pinch-off [Thürey et al., 2010]. Unfortunately
a basic explicit surface tension formulation imposes a restriction on the admissible time
step ∆t ∈ O(∆x 3

2 ) [Brackbill et al., 1992]. A great difficulty in removing this restriction
is a lack of an explicit surface representation, which is typical in schemes using implicit
surfaces [Zheng et al., 2009; Sussman and Ohta, 2009; Liovic et al., 2010]. A semi-implicit
surface tension formulation was developed on explicit surface meshes independently by
Schroeder et al. [2012] and Misztal et al. [2012] which happen to be equivalent as we will
see in Chapter 4. Later, the work of Schroeder et al. was extended [Zheng et al., 2015] by
coupling the pressure solve on the MAC grid with an explicit triangulated mesh near the
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surface of the liquid using particles, although the work of Schroeder et al., which coupled
an explicit surface mesh to the MAC grid, more closely resembles our work. However, by
taking a different approach to pressure projection, we are able to handle cells with arbitrary
complexity on the surface, without needing to invent complex interpolation operators
between non-conforming Eulerian and Lagrangian meshes. Our formulation is also simpler
than the work of Zheng et al. because it does not require auxiliary particles or complex
triangulations near the surface mesh. Particles can be introduced, however, for the purposes
of advection as mentioned earlier.

1.2 Contributions

We present a novel approach to simulating water-like liquids with a surface tension model
able to simulate specific contact angles. Introducing the use of the mimetic finite dif-
ference (MFD) method to inviscid incompressible free surface flows (water-like liquids)
with accurate boundary conditions, gives us the flexibility to build an Eulerian grid-based
method seamlessly coupled to a Lagrangian surface mesh. This further allows us to add a
semi-implicit surface tension scheme [Misztal et al., 2012], which we adapt to the MFD
discretization and extend to handle specific contact angles. Our discretization can be seen
as an extension to existing MAC based finite difference pressure solvers, by modifying the
discrete Laplacian near the surface with a modified version prescribed by the MFD method
augmented with semi-implicit surface tension. The individual contributions can be listed as
follows:

• application of the mimetic finite difference method to water-like liquids,

• coupling a semi-implicit surface tension formulation to the MFD pressure solve,

• extending the surface tension formulation to the MFD discretization with handling of
specific contact angles and

• meshing techniques required to make the above methods stable.

Our extension of the MAC based pressure projection to the surface of the liquid is especially
simple to implement as we will see in Chapter 3.
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Chapter 2

Fluid Equations

Water is a fluid, and in the most common setting, fluid motion is governed by the incom-
pressible Navier-Stokes equations, typically referred to as momentum and incompressibility
equations, respectively:

D~u

Dt
+ 1
ρ
∇p = ~f + ν∇ · ∇~u

∇ · ~u = 0

where ~u is the velocity field, p is the pressure driving the internal source term ∇p, ρ is
fluid density1, and ~f is the external source term representing external forces (e.g. gravity).
D~u/Dt is the total derivative of velocity given by

D~u

Dt
= ∂~u

∂t
+ ~u · ∇~u,

which describes how the velocity of a fluid particle changes as it moves with the flow.
Finally, ν is the kinematic viscosity. It measures the viscosity of the fluid. We divert the
interested reader to seek the formulation of these equations in a well-established source
[Chorin et al., 1990]. We will use this model as a basis for our computational method.

Recall that we are interested in simulating water-like liquids, and generally speaking
these have very low viscosity. We opt to ignore viscosity in our model altogether, because
our simulations typically suffer from some numerical dissipation due to a heavy use of
interpolation during the velocity advection stage of our simulator as we will see later. This

1Note that fluid density ρ is constant since the fluid is incompressible.
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causes damping in fluid motion, which can be interpreted as the missing physical viscosity.
Thus, we will focus our study on inviscid2 fluids, so we can ignore the viscosity term in
the momentum equation. These Navier-Stokes equations without viscosity are called the
incompressible Euler equations.

2.1 Incompressible Free Surface Flow

As we have established, in order to simulate a water-like fluid, we need to solve the
incompressible Euler equations given by:

D~u

Dt
+ 1
ρ
∇p = ~f (momentum) (2.1a)

∇ · ~u = 0 (incompressibility) (2.1b)

To represent real liquids, these equations should be solved on a three-dimensional spacial
domain Ω ⊂ R3 representing the body of the fluid. However we will focus on a simplification
of this problem to two dimensions, so we assume Ω ⊂ R2. This means that the functions ~u,
~f , and p are defined on the domain [0,∞)× Ω with time parameter t ∈ [0,∞) and spacial
parameters (x, y) ∈ Ω. To be precise, ~u, ~f : [0,∞) × Ω → R2 and p : [0,∞) × Ω → R.
Naturally, the gradient and divergence operators (∇ and ∇· resp.) correspond to derivatives
in the spacial domain and can be written in the standard basis as

∇p =
(
∂p

∂x
,
∂p

∂y

)>
and ∇ · ~u = ∂~u

∂x
+ ∂~u

∂y
.

Unsurprisingly, the momentum equation (2.1a) describes how the fluid accelerates due to
forces acting on it. It is simply Newton’s second law applied to fluids. The second term on
the left-hand side describes the forces due to pressure imbalance inside the fluid, and the
right hand side is responsible for all external forces like gravity and surface tension. The
incompressibility equation (2.1b) ensures that the fluid cannot be compressed. This is an
idealization, since even water is compressible at high pressures, but this effect is typically
not observable in the absence of shock-waves. In fact, some particle based methods for
liquid simulation like SPH, suffer from excessive compressibility, so researchers actively
develop better methods [Solenthaler and Pajarola, 2009; Ihmsen et al., 2014a] to battle this
effect to make liquids appear more natural. A fluid is incompressible if its volume remains

2An idealized fluid with no viscosity is called inviscid.
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constant throughout the simulation. This is true when at every point in time, the amount
of fluid entering the fluid domain is the same as the amount leaving. Mathematically, this
means that the velocity field ~u, normal to the liquid boundary, integrates to zero on the
boundary: ∫

∂Ω
~u · n̂ = 0,

where n̂ is the outward normal to the liquid domain Ω. By the divergence theorem [Chorin
et al., 1990] this is equivalent to

∫
Ω∇ · ~u = 0. Since this condition must hold in every part

of the fluid, i.e. for any V ⊂ Ω, it is necessary that ∇ · ~u = 0, which is precisely (2.1b). In
other words, the velocity field must be divergence free.

To simplify the problem further, we will separate (2.1) into three parts:

D~u

Dt
= 0 (advection) (2.2a)

∂~u

∂t
= ~f1 (body forces) (2.2b)

∂~u

∂t
+ 1
ρ
∇p = ~f2 s.t. ∇ · ~u = 0 (projection) (2.2c)

where external body forces are separated into two parts: ~f = ~f1 + ~f2, because it can be
beneficial to apply implicit or semi-implicit methods to couple certain forces with the
projection step. The method of breaking partial differential equations (PDEs) into parts
(as we split (2.1) into (2.2)) is typically referred to as operator splitting. Splitting gives us,
at best, a first order velocity approximation in time, which is sufficient for our purposes,
and is the standard method used for fluid simulation in computer graphics. This enables us
to use different integration schemes at each step, and ultimately exploit efficient ways to
solve each equation. The simplicity and flexibility of this approach typically outweighs any
advantages we get from tackling (2.1) with one monolithic method, at least for animation.
Bridson [2015, §2.1] describes splitting in more detail and explains why it’s prevalent in
fluid simulations.

Discretizing the three equations (2.2) in time, effectively forms our time stepping
algorithm used to animate the motion of the liquid. Let’s fix ∆t as the time step parameter
at the start of the simulation. At each step we start with some velocity field ~u(t) : Ω→ R2,
fixed at some time t, and we solve (2.2) to find the incompressible velocity field for the
next time step, ~u(t+ ∆t), which we use to move the liquid. First, we solve the advection
equation (2.2a), with ~u(t) as the current velocity field, giving us an intermediate velocity
field ~u∗(t+ ∆t). Then, we apply body forces (like gravity) by solving equation 2.2b using a
simple explicit forward Euler integration scheme, and ~u∗(t+∆t) as the current velocity field.

8



This gives us the second intermediate velocity field ~u∗∗(t+ ∆t). Finally, using ~u∗∗(t+ ∆t),
we discretize the projection equation (2.2c) in time, to form an elliptic PDE, which we
subsequently solve by projecting ~u∗∗(t + ∆t) onto a nearby incompressible velocity field,
giving us ~u(t + ∆t). At the end of each step we increment the time variable by ∆t. In
the following subsections we will describe the time discretization schemes used for each
equation in (2.2) in more detail.

2.1.1 Velocity Advection

The velocity is advected by solving equation 2.2a on a divergence-free velocity field. We
use a standard unconditionally stable semi-Lagrangian advection scheme first introduced
to graphics by Stam [1999]. There have been a number of methods developed to solve
for advection, including particle methods, which bypass having to solve equation 2.2a
altogether. Since advection is not the main focus of our research, we will only briefly
describe semi-Lagrangian advection for completeness.

Figure 2.1: Staggered velocity
grid with horizontal velocity compo-
nents are sampled on the solid grid
and the vertical velocity components
are sampled on the dashed grid.

We use a standard Marker-And-Cell (MAC) type grid
of staggered velocities, which is depicted in Figure 2.1.
This velocity grid coincides with our discretization for
pressure projection described in a later section. More
precisely, vertical and horizontal velocity samples are stored
separately at midpoints of grid edges, with one sample per
edge. We are purposely vague on the exact location of
these samples as it is currently not important, but will be
described more precisely later.

Recall that equation 2.2a implies that the velocity of a
fluid particle does not change as it moves along the velocity
field. This means that if we consider a particle at a grid
node, its velocity is the same as it was in the previous
time step. Mathematically, suppose ~ui,j(t) is a velocity
component sampled at position ~xi,j on row i and column
j of a regular grid at time t. Then, at time t+ ∆t, a fluid
particle in position ~xi,j must have travelled from some
position that can be approximated by ~xprev = ~xi,j −∆t~ui,j(t) (higher order time schemes
are also possible). Thus the new velocity ~u∗i,j(t+ ∆t) on ~xi,j , is the velocity sampled at ~xprev
from the previous time step. Since ~xprev may not lie on a grid node, we need to interpolate
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the velocities from the neighbouring grid locations and set

~u∗i,j(t+ ∆t) = interpolate(~ui,j(t), ~xprev).

Note that we can use a more accurate time integration scheme to compute ~xprev, and any
reasonable interpolation scheme can work for interpolate. Furthermore, note that grid
velocity samples are given from the previous time step, and may not be present near ~xprev.
Thus prior to the velocity advection step we need to extrapolate velocities to outside of the
liquid domain [Bridson, 2015, Ch. 4]. By extrapolating the velocity field, we ensure that
velocity samples are available everywhere for the interpolation step.

Unfortunately semi-Lagrangian advection suffers from significant numerical dissipation,
which can be interpreted as an approximation of viscosity. However, simulations like
the crown splash of a drop of milk look overly damped. Luckily there are a body of
sophisticated advection techniques available in computer graphics to ameliorate this issue
as discussed in Section 1.1. One close relative of the semi-Lagrangian method that has
not been mentioned before is semi-Lagrangian-MacCormack advection. This method does
one regular semi-Lagrangian advection step just described, and corrects the error using a
backward semi-Lagrangian step with negated velocities. The details of this method are
thoroughly examined and compared with the standard semi-Lagrangian scheme in [Selle
et al., 2008]. As mentioned before, particle advection methods like the Particle-in-Cell
(PIC) [Harlow, 1963] or the Fluid-Implicit-Particle (FLIP) [Brackbill and Ruppel, 1986]
and their derivatives [Zhu and Bridson, 2005; Ferstl et al., 2016] can also be used with our
method, however more work is required to couple particles and our explicit Lagrangian
surface.

2.1.2 Body Forces

Solving equation 2.2b is typically done with a simple explicit forward Euler integration
scheme:

~u∗∗(t+ ∆t) = ~u∗(t+ ∆t) + ∆t ~f1(t),

which gives us the second intermediate velocity field, ~u∗∗(t+ ∆t). In general, ~f1 can include
gravity, surface tension and other external forces from other dynamic objects. However,
treating surface tension and pressure projection separately forces a stiff time-step restriction
as we will see in Chapter 4. Thus we will include surface tension in the pressure projection
step, so ~f1 consists solely of gravitational acceleration ~g.
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2.1.3 Pressure Projection

Finally we need to ensure that the velocity field used to move our fluid is divergence free.
Thus it remains to project the intermediate velocity field onto a divergence free velocity
field by solving equation 2.2c. For the sake of exposition, we first assume ~f2 = 0, and
reintroduce surface tension in a later chapter. Since density is constant, we can assume
ρ = 1 without loss of generality. We now discretize the time derivative using the backward
Euler scheme to get equations

~u(t+ ∆t) = ~u∗∗(t+ ∆t)−∆t∇p(t+ ∆t) (2.3a)
∇ · ~u(t+ ∆t) = 0 (2.3b)

We can further simplify these equations by eliminating the velocity unknown:

∆t∇ · ∇p(t+ ∆t) = ∇ · ~u∗∗(t+ ∆t). (2.4)

This equation is a standard elliptic PDE, referred to as Poisson’s problem where∇·~u∗∗(t+∆t)
is the source term. From this point forward, to simplify our equations, we will assume
that the pressure and velocity fields are evaluated at time t+ ∆t unless otherwise stated.
Thus pressure p and velocities ~u∗∗ and ~u∗ can be seen to be defined solely in the spatial
dimensions.

Boundary Conditions

We have not yet mentioned what happens to our fluid at the boundary where the fluid
meets air or a solid wall. This is a critical part of simulating liquids for animation since the
liquid-air interface is the one we see, and the point where the three media (liquid, solid
and air) meet shows whether the liquid beads up or flattens out due to surface tension.
More precisely, at the liquid-air interface the pressure is a fixed constant, because liquids
in a common setting are exposed to an effectively constant atmospheric pressure. At the
liquid-solid interface, the pressure under a resting body of liquid, for instance, depends
on the height of liquid above it, so we cannot constrain it to a constant. However, we
can assume that the liquid either sticks to the solid surface (a standard assumption in
continuous fluid mechanics) or it moves freely along the surface. In either case, we assume
that solids are impermeable. This property can be enforced with a no-penetration boundary
condition that matches the velocity normal to the surface of the solid, with the velocity
of the fluid. The constraints on the velocity tangential to the solid surface are referred to
as no-slip (setting tangential component to zero) and free-slip (unconstrained tangential
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air

solid

liquid

p = fD ~u · n̂ = fN

Figure 2.2: No-penetration boundary condition forces the velocity of the liquid surface match
that of the touching solid surface in the normal direction. Free-slip allows the liquid to slide along
the solid surface freely.

component) boundary conditions. We will focus on the free-slip condition as it is the natural
condition for the inviscid case.

We handle behaviour at these interfaces by imposing boundary conditions on the PDE
(2.4):

p = fD on ΓD (Dirichlet) (2.5a)
n̂ · ~u = fN on ΓN (Neumann) (2.5b)

where ΓD and ΓN are parts of the boundary on which Dirichlet and Neumann conditions
are enforced respectively, and n̂ is the outward facing normal to the domain boundary
∂Ω = ΓD ∪ ΓN . This is illustrated in Figure 2.2. Using equation 2.3a, the Neumann
boundary condition can be rewritten in terms of pressure as

n̂ ·∆t∇p = n̂ · ~u∗∗ − fN on ΓN . (2.6)

To enforce the constraints on the liquid interface, we set fD = 0 to fix pressure at the
liquid-air boundary and set fN = 0 to enforce the free-slip condition along static solid
walls. More precisely, we can set fD to the atmospheric pressure, but this will only affect
the solution for pressure in (2.4) up to a constant. However, in animation, we are only
interested in velocities, and since the gradient of a constant is zero, equation 2.3a tells us that
velocities remain unaffected. Furthermore, in order to simulate moving solid boundaries, it
is also desirable to handle non-zero Neumann boundary conditions. In this case we will set
fN = n̂ · ~usolid, where ~usolid is the velocity of the solid object.

Note that for problems with pure Neumann boundary conditions (i.e. ΓN = ∂Ω) we
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have ∫
∂Ω
n̂ · ~u∗∗ =

∫
Ω
∇ · ~u∗∗ by the divergence theorem,

= ∆t
∫

Ω
∇ · ∇p by (2.4),

= ∆t
∫
∂Ω
n̂ · ∇p by the divergence theorem,

=
∫
∂Ω
n̂ · ~u∗∗ − fN by (2.6).

This compatibility condition requires that fN must be zero-mean:∫
∂Ω
fN = 0.

Since we do not simulate air, we will not encounter pure Neumann boundary conditions in
our liquid simulations. This condition is significant, however, when conducting convergence
tests to ensure that boundary conditions are set correctly (see Sections 6.1 and 6.2 for
numerical convergence tests).

2.2 Surface Tracking

So far we have outlined the components of a standard fluid simulator, while deliberately
omitting the details of spatial discretization for pressure projection, since it will be covered
in the next chapter.

In order to build a working simulator, we need a means to represent the motion of a body
of liquid along the velocity field we worked so hard to compute from the incompressible
Euler equations. The simplest and most intuitive method to describe a liquid is with
particles moving through space. Then we can simply move each particle i at position ~xi
through the computed velocity field ~u to the new position

~xi
new = ~xi + ∆t~u(~xi). (2.7)

As we have already mentioned, there are other ways to represent the liquid in an Eulerian
based fluid simulator, but using an explicit Lagrangian surface mesh is advantageous when
dealing with surface tension effects. Thus instead of particles on the interior of the liquid,
we will represent only the surface of the liquid with a closed curve (or a set of closed curves)
connecting the particles on the surface. More specifically, we will connect surface particles
with line segments, and move them as in equation 2.7. We leave the details of this approach
to Chapter 5.
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2.3 Overview

To summarize the elements of fluid simulation we propose the following general algorithm
employed in our work.

Algorithm 1 Unified-MFD
1: Initialize surface mesh with vertices ~xi. (Chapter 5)
2: Initialize velocity field ~u.
3: loop
4: Build simulation mesh from surface vertices ~xi. (Chapter 5)
5: Advect velocity field ~u.
6: Apply body forces (gravity): ~u← ~u+ ∆t~g.
7: Make ~u incompressible. (Chapters 3 and 4)
8: Move surface mesh: ~xinew = ~xi + ∆t~u(~xi). (Section 5.1)
9: print Surface mesh defined by vertices ~xi.
10: end loop
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Chapter 3

The Mimetic Finite Difference
Method

The Mimetic Finite Difference (MFD) method is a framework used to solve a variety of
partial differential equations (PDEs), not unlike the finite-volume (FV) and finite-element
(FE) methods. Unlike standard FV and FE methods, however, the MFD method mimics
some fundamental mathematical and physical properties including duality of differential
operators, exact identities of vector and tensor calculus and conservation laws on a vast
family of unstructured meshes. A comprehensive review of the MFD method can be found
in [Lipnikov et al., 2014] and a more fundamental introduction in [Veiga et al., 2014].

To the best of our knowledge, the MFD machinery has not been applied to simulation
in computer graphics, although it has been applied to geometry processing [Alexa and
Wardetzky, 2011]. This chapter gently introduces the MFD method as it is applied in our
specific context to solve the Poisson problem in (2.4).

Let Ω ⊂ R2 be our two-dimensional computational domain on which the Poisson problem
is discretized. We take Ω to be polygonal with Lipshitz continuous boundary. Further,
consider an unstructured non-overlapping decomposition of Ω into polygonal cells c ⊂ Ω.
These cells need not be convex, however they must satisfy a regularity condition in order
to guarantee convergence of the MFD method under mesh refinement. We refer to this
decomposition as a polygonal mesh. A mesh is said to be regular if there exist fixed
quantities N∗ ∈ Z and α∗ ∈ R, such that the following condition holds:
Condition 3.0.1 (Regularity). Each polygon can be split into at most N∗ triangles t, such
that

rt
dt
> α∗, (3.1)
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where rt is the radius of the inscribed circle, and dt is the length of the largest edge of t.

This assumption permits a large family of shapes, including non-convex ones. Not
unlike FE and FV methods, we are constrained by mesh quality. However, no explicit
triangulation of the cells is required; we only require that such a triangulation is possible.
This regularity condition is similar for 3D MFD discretizations where a polyhedral cell is
partitioned into tetrahedra with a bound on the ratio between the radius of the inscribed
sphere and the diameter for each tetrahedron.

It is worth noting that the ratio in (3.1) is also used to measure the quality of tetrahedral
meshes used for FE simulations [Alliez et al., 2005; Shewchuk and Si, 2014], and is equivalent
to other measures like the minimum and maximum dihedral angles [Bronson et al., 2014].
Creating good quality tetrahedral meshes has been an active topic of research [Alliez et al.,
2005; Labelle and Shewchuk, 2007; Bronson et al., 2014; Shewchuk and Si, 2014; Si, 2015]
to this day. Naturally, using the FE method on an existing mesh with convex cells would
require an explicit subdivision of cells, while the MFD method works on polygonal meshes
out of the box. Furthermore, this subdivision would have to maximize the ratio in the
regularity condition, which is typically a non-trivial task. Alternatively, it is possible to
extend the FE method to a larger set of admissible cells as to avoid explicit triangulation,
however this becomes more complicated and does not scale well with the number of unique
cell shapes. Thus one advantage of the MFD approach to FE methods is not having to
maintain an explicit high quality triangle/tetrahedron mesh.

The Mimetic Finite Difference method is a close cousin of the Finite Volume method.
Notably, both methods can handle irregular elements, and both methods aim to be con-
servative. For instance in cell centred discretizations, the flux between cells is balanced
by the discrete divergence operator. The main difference between the two methods is
the approximation of constitutive laws. Fourier’s law [Halley, 2006, p. 199], for instance,
requires the heat transfer rate to be proportional to the negative temperature gradient and
the area orthogonal to the flow. The line connecting cell centres on an unstructured mesh
may not always be orthogonal to the interface between the cells. Since the FV method draws
the discrete gradient from the centres of adjacent cells, it may not satisfy orthogonality.
Hence basic FV methods are often used with Voronoi meshes that satisfy this orthogonality
constraint by definition. These issues have been ameliorated by extensions on the FV
formulation, e.g. Discrete Duality Finite Volume (DDFV) [Domelevo and Omnes, 2005] and
Hybrid or Mixed Finite Volume (HFV, MFV) [Eymard et al., 2007; Thomas and Trujillo,
1999] methods. However, these extensions require auxiliary meshes or additional degrees
of freedom. The MFD method relies on the construction of a discrete inner product that
provides discrete duality between the gradient and divergence operators (similar to DDFV).
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3.1 Discretization

In this section, we will describe one particular discretization of the pressure and velocity
functions on the discrete mesh. First, we need to describe the geometry of the mesh in
more detail.

3.1.1 Domain Discretization

In 2D, we can describe the mesh as a planar directed graph embedded into R2. As such, let
NV denote the total number of mesh nodes, which are located at positions ~xn ∈ R2. Edges
are identified by a pair of node indices e = (n,m), and cells are denoted by c as mentioned
before. Figure 3.1a highlights the different components of the mesh. We will denote the
boundary of each cell by ∂c. Furthermore, each cell boundary is a disjoint union of edge
sets denoted by

φ(e) = { t~xn + (1− t)~xm : t ∈ [0, 1) }.

By a slight abuse of notation, we will use e and φ(e) somewhat interchangeably and simply
write e ∈ ∂c to mean φ(e) ⊂ ∂c, because for our purposes it is only important to note when
an edge e is on the boundary of c or Ω.

We will also need to draw a discrete analog to the continuous problem. In this setting
we will enumerate our nodes, cells and edges. Thus let NE and NC denote the numbers of
edges and cells respectively, and reuse the symbol c to index cells from 1 to NC , and the
symbol e to index edges from 1 to NE.

The meaning of symbols c and e will be clear from the context. For instance, appearing
as a domain of integration in

∫
e, e is synonymous to φ(e), while appearing as an index into

a vector in ue, e is synonymous to an index between 1 and NE. This notation allows us to
draw a clear connection between the continuous problem and its discretization seamlessly.

Now we can describe the notation used to describe the variables involved in solving
Poisson’s problem. Pressure is a scalar function p : Ω→ R, and velocity is a vector function
~u : Ω → R2. Discrete pressure values are stored on nodes. Velocities are stored on edge
midpoints as tangential components of ~u in a fixed direction of the edge. In 2D, edges
correspond to interfaces between cells. The pressure degrees of freedom are denoted by
pn = p(~xn) for each node n. The vector describing these pressure values at all nodes is given
by pn = pn, hence p ∈ RNV . Sampled velocities are given by ue = 1

|e|
∫
e ~u · τ̂e dL for each

edge e = (n,m), where τ̂e = (~xm − ~xn)/|e| is the tangential unit vector along the edge and
|e| = ‖~xm − ~xn‖. The vector describing these velocity values at all edges on the discrete
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mesh is denoted by ue = ue, hence u ∈ RNE . An example of such a discretization is shown
in Figure 3.1b.

ce
n

Ω
(a) (b)

Figure 3.1: (a) Decomposition of the domain Ω into cells c, with edges e, and nodes n. (b)
Node-edge based discretization of the domain using the mesh in (a). Velocity components ue are
stored at the midpoints of the edges (arrows). Pressures pn are stored at the nodes (dots).

3.1.2 Discrete Operators

We define a discrete gradient operator G : RNV → RNE on the mesh by

(Gp)e = pm − pn
‖~xm − ~xn‖

. (3.2)

Note that G is a sparse matrix of positive and negative values. In particular, each row
corresponds to an edge (n,m) with a negative value for the starting node n, and a positive
value for the ending node m.

Example 3.1.1. The discrete gradient matrix on a simple quadrilateral cell is given by
the following matrix with rows representing edges in the order: left, bottom, right and top,
with lengths l, b, r and t respectively directed as depicted in Figure 3.2.

G� =


−l−1 l−1 0 0
−b−1 0 0 b−1

0 0 r−1 −r−1

0 −t−1 t−1 0


Assuming the order of the vertices follows in the clockwise direction starting from the
bottom-left node.
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Figure 3.2: Example of quadrilateral cell.

This discrete gradient operator is identical to the one found in standard finite difference
and finite volume schemes. The MFD method deviates, however, from other methods at
the introduction of a corresponding discrete divergence operator, which we define as the
dual of the given gradient operator:

D = −M−1
V G>ME, (3.3)

where MV and ME are some symmetric positive definite (SPD) matrices that we will define
later. Let us define two inner products on RNV and RNE as follows

〈q, r〉V = q>MV r ∀q, r ∈ RNV (3.4)
〈v,w〉E = v>MEw ∀v,w ∈ RNE . (3.5)

Then the duality between G and D holds by construction, because we have

〈Gq,v〉E = −〈q,Dv〉V ∀v ∈ RNE , ∀q ∈ RNV , (3.6)

which is analogous to the duality of the continuous gradient and divergence operators (see
Appendix A). It follows from the definition of an inner product that ME and MV are SPD
matrices. This formulation allows us to discretize the PDE in (2.4) as a symmetric positive
semi-definite system ∆tDGp = Du∗∗, which reduces to

∆tG>MEGp = G>MEu∗∗, (3.7)

by multiplying both sides by the diagonal matrix MV (see Appendix A for the derivation
of MV ). Solving this system will give us a pressure field p, which we can use to compute
the divergence-free velocity field as

u = u∗∗ −∆tGp, (3.8)
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which in effect removes the curl free part of the Helmholtz-Hodge decomposition [Chorin
et al., 1990, pp. 36-37] from u∗∗ and leaves us with divergence free velocities. Using
equation 3.8 and substituting it into (3.7), we can alternatively solve the system

MEu + ∆tMEGp = MEu∗∗

∆tG>MEu = 0,

for u and p which corresponds to a discretization of the Poisson’s problem in mixed form
as in equations 2.3. We define a pseudo-divergence operator D̃ = G>ME, and let λ = ∆tp.
Then we can write this system in block matrix form as(

ME D̃>
D̃ 0

)(
u
λ

)
=
(

MEu∗∗
0

)
, (3.9)

which is non-singular in the presence of a Dirichlet boundary condition (see Section 3.2).
Solving this system gives the divergence free velocity field u directly. The symmetric matrix
above conveniently corresponds to the Karush-Kuhn-Tucker (KKT) matrix [Nocedal and
Wright, 2006, §16.1] used to solve the following optimization problem:

minimize 1
2u>MEu− u>MEu∗∗

over u ∈ RNE

subject to D̃u = 0
(3.10)

as prescribed by the KKT conditions where λ acts as a Lagrange multiplier enforcing
the equality constraints. In general, the system (3.9) is known to be indefinite [Nocedal
and Wright, 2006, Ch. 16], and is more difficult and costly to solve than (3.7). However,
this formulation will also allow us to include a semi-implicit scheme for surface tension
more easily (see Section 4.2). Furthermore, by adding a constant term, we can rewrite the
objective function in (3.10) as

1
2(u− u∗∗)>ME(u− u∗∗), (3.11)

which can also be written more concisely as
1
2‖u− u∗∗‖2

ME
, (3.12)

where ‖ · ‖ME
denotes the inner product norm from (3.5). This form directly shows that we

are looking for a divergence-free projected velocity field that is closest to u∗∗. Note that the
matrix MV does not appear in either formulation, so we can safely ignore it and dropping
the subscript E, rewrite M = ME and naturally 〈·, ·〉 = 〈·, ·〉E.
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Building the mass matrix M

We assemble the matrix M on a per-cell basis mimicking the additivity of the continuous
inner product:

〈u,v〉 =
∑
c

〈uc,vc〉c =
∑
c

u>c Mcvc ∀u,v ∈ RNE (3.13)

where uc and vc are the vectors u and v restricted to the edges of cell c, and Mc is the
corresponding cell-based inner product matrix defining the local mimetic inner product
〈·, ·〉c. The MFD framework provides second order convergence of the pressure (with respect
to grid resolution) under the following condition:

Condition 3.1.2 (Consistency). Let uc and vc be the discrete representations of continuous
vector fields ~u and ~v restricted to the cell c ⊂ Ω respectively. Furthermore, assume that ~v
and ∇× ~u are constant in c and ~u · τ̂e is constant on each edge e ∈ ∂c. Then, we have an
exact equality:

〈uc,vc〉c =
∫
c
~u · ~v dV. (3.14)

In other words, the discrete inner product should exactly compute the integral in (3.14)
for a particular set of piecewise constant vector fields.

We would like to build a matrix Mc that satisfies this condition. Let { ê1, ê2, ê3 } be
an orthonormal basis of R3. Then assume that we have vector fields ~u and ~v as described
above. Where appropriate, we let vectors in R2 be embedded in R3 with the third coefficient
being zero. To avoid ambiguities, we emphasize that integrals in this section are taken over
non-empty subsets of Ω × {0}, thus essentially ignoring the third coordinate. Since ~v is
constant in c× R ⊂ R3, we can express it as

~v = vxê1 + vyê2

in c× R where vx, vy ∈ R are constants. Then let

~q1(x, y, z) = (y − yc)ê3 and
~q2(x, y, z) = (xc − x)ê3

be two vector functions on R3, where (xc, yc) is the centroid of cell c. Note that êi = ∇× ~qi
for i ∈ { 1, 2 }, so we can write

~v = vx∇× ~q1 + vy∇× ~q2 = ∇× (vx~q1 + vy~q2).
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Now let ~q = vx~q1 + vy~q2 = qz ê3, where qz(x, y) = vx(y− yc) + vy(xc− x). Then observe that∫
c
~u · ~v dV =

∫
c
~u · ∇ × ~q dV

=
∫
c
~q · ∇ × ~u dV +

∫
c
∇ · (~q × ~u) dV by a cross product identity

where the first term is identically zero since ∇× ~u is constant and
∫
c ~q dV = 0. The second

term reduces further∫
c
∇ · (~q × ~u) dV =

∫
∂c

(~q × ~u) · n̂ dL by the divergence theorem

= −
∑
e∈∂c

∫
e
~u · (~q × n̂c,e) dL

= −
∑
e∈∂c

∫
e
~u · αeqz τ̂e dL.

The last step follows from the relationship between the edge normal and our fixed edge
directions to be αeτ̂e = ê3 × n̂c,e where αe ∈ {−1, 1} is determined by the orientation of the
outward facing normal n̂c,e and the fixed edge direction τ̂e. Finally, since ~u · τ̂e is constant
on each edge, we can write∫

c
~u · ~v dV = −

∑
e∈∂c

αe~u · τ̂e
∫
e
qz dL = −

∑
e∈∂c

αeue

∫
e
qz dL.

Note that uc collects all elements ue in u where e ∈ ∂c. Let rc be a vector indexed by edges
e ∈ ∂c in the same order as in uc and defined as

(rc)e = −αe
∫
e
qz dL.

Then we can write ∫
c
~u · ~v dV = u>c rc.

Thus it suffices to find Mc such that

u>c Mcvc = u>c rc (3.15)

in order to satisfy the consistency condition.
Remark 3.1.3. For any u ∈ RNE , we can find a vector field ~u that satisfies the assumptions
in condition 3.1.2. In particular, there exists a vector field ~u such that for each cell c,

∇× ~u = 1
|c|

∑
e∈∂c

αe|e|ue in c, and (3.16)

τ̂e · ~u = αeue on each edge e ∈ ∂c. (3.17)
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Here, |c| is the area of the cell and |e| = ‖~xm − ~xn‖ for edge e = (n,m) as before. The
field ~u is a non-unique solution to the differential equation (3.16) with Neumann boundary
conditions (3.17).

The remark above implies that u can be arbitrary since we can always find a correspond-
ing ~u. Hence the consistency condition 3.1.2 must be satisfied for an arbitrary uc. Thus we
can drop uc from (3.15), and write the consistency condition as Mcvc = rc for all possible
vc. Now since it suffices to satisfy this condition on the basis of R2, we can write it as

McNc = Rc (3.18)

where Nc and Rc are defined on each row indexed by e as

(Nc)e = (τ̂e · ê1, τ̂e · ê2) = τ̂>e (3.19a)
(Rc)e = αe|e| (yc − ye, xe − xc) (3.19b)

where (xe, ye) is the midpoint of edge e. It can be shown that R>c Nc is symmetric positive
definite [Veiga et al., 2014, Ch. 4]. Then the matrix

M0
c = Rc(R>c Nc)−1R>c (3.20)

solves equation 3.18 since the inverse of R>c Nc exists. Unfortunately, M0
c can be ill-

conditioned and using it alone, can produce unstable results. Luckily, this is not the only
solution to (3.18). The general solution can be written as

Mc = M0
c + M1

c (3.21)

where naturally M1
cNc = 0. We can impose a stability condition on our solution to alleviate

this issue:

Condition 3.1.4 (Stability). There exist two positive constants C∗ and C∗ independent
of the mesh size, such that

C∗|c|v>c vc ≤ v>c Mcvc ≤ C∗|c|v>c vc ∀vc.

Let M1
c = 1

2Tr (M0
c)
(
I−Nc(N>c Nc)−1N>c

)
, where Tr denotes the trace of a matrix,

and I is the appropriately sized identity matrix. Note that the regularity condition 3.0.1
avoids degenerate elements, and hence ensures that the edge vectors of each cell span R2.
This guarantees that Nc is a full rank matrix, and hence that the inverse of N>c Nc exists.
It can be shown [Veiga et al., 2014, Ch. 4] that the solution with this choice of M1

c satisfies
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(a) Node-edge MFD grid discretization (b) MAC grid discretization

Figure 3.3: In both discretizations, velocities are stored at edge midpoints, although in (b) the
normal component to each cell boundary is stored, instead of the tangential component as in
(a). Pressures are stored at cell centers in (b) instead of cell nodes as in (a). Note that the only
essential difference between the two discretizations is which part of the domain is considered a
grid cell.

the stability condition 3.1.4. In fact, this is the canonical solution used in practice [Lipnikov
et al., 2014].

In summary, the MFD method prescribes an inner product matrix M assembled from
constituent per-cell matrices Mc, given by

M0
c = Rc(R>c Nc)−1R>c

M1
c = 1

2Tr
(
M0

c

) (
I−Nc(N>c Nc)−1N>c

)
Mc = M0

c + M1
c (3.22)

For further details on the derivation of this solution, we direct the reader to [Lipnikov et al.,
2014] and [Veiga et al., 2014]. It is worth noting that the matrix Mc encodes the shape of
the cell, and can be precomputed for any repeating cell shape. This means that the cost of
computing M at every frame is incurred only for cells with irregular shapes.

Example 3.1.5. Consider a regular grid mesh as in Figure 3.3. In this example we will
demonstrate how to construct the mass matrix M on this discretization, and show that
the solution (3.22) coincides with the MAC method applied to Poisson’s problem (2.4) on
regular grids. This equivalence is an attractive feature because the MAC discretization is
widely used to simulate fluid flows in animation [Bridson, 2015, Ch. 8]. This allows one to
use the MFD method as an extension to the standard MAC grid with finite differences.
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Let the width (and height) of a grid cell be ∆x. Considering a single grid cell c, with
edges ordered: left, bottom, right and top; we can construct matrices Nc and Rc following
the recipe from (3.19):

(Nc)left = (1, 0)
(Nc)bottom = (0, 1)
(Nc)right = (1, 0)
(Nc)top = (0, 1)

(Rc)left = −∆x(0,−∆x
2 )

(Rc)bottom = ∆x(∆x
2 , 0)

(Rc)right = ∆x(0, ∆x
2 )

(Rc)top = −∆x(−∆x
2 , 0)

This gives us local matrices

Nc =


1 0
0 1
1 0
0 1

 , and Rc = ∆x2

2


0 1
1 0
0 1
1 0

 .
Then computing the matrix in equation 3.22 gives us

Mc = ∆x2

2 I4,

where I4 is the 4× 4 identity matrix. Combining all the local matrices, we can see that M
is diagonal with

Me,e =
{

∆x2 if e is an internal edge
∆x2

2 if e is a boundary edge
Ignoring boundary conditions, we can observe how pressure is updated on the grid. Consider
a pressure sample pi,j on a grid node at row i and column j. We will denote the velocity
samples left, right, above and below the pressure sample in the grid by ul, ur, ua and ub
respectively. Recall Poisson’s problem discretized in (3.7). Notice that on a regular grid, a
row in G> has two 1s for edge values to the right and above, and two −1s for edges to the
left and below, ignoring the ∆x−1 factor. Thus (3.7) gives the pressure solve:

∆t 1
∆x(1, 1,−1,−1)︸ ︷︷ ︸

G>

·∆x2︸ ︷︷ ︸
M

1
∆x


pi+1,j − pi,j
pi,j+1 − pi,j
pi,j − pi−1,j
pi,j − pi,j−1


︸ ︷︷ ︸

Gp

= 1
∆x(1, 1,−1,−1)︸ ︷︷ ︸

G>

·∆x2︸ ︷︷ ︸
M


ur
ua
ul
ub


︸ ︷︷ ︸

u∗∗

.

We can reduce this further to
∆t
∆x(4pi,j − pi+1,j − pi,j+1 − pi−1,j − pi,j−1) = ub + ul − ua − ur,
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which is precisely the finite difference 5-point stencil for the Poisson problem on the MAC
grid (see the book by Bridson [2015] for a neat derivation of this stencil on a MAC grid).

To emphasize the simplicity of building the inner product matrix M and to summarize
this subsection, we present the following algorithm:

Algorithm 2 Build-MFD-Mass-Matrix
1: for each cell c do
2: Compute cell centroid (xc, yc)
3: for each edge e do
4: Let n̂ be the outward facing normal
5: Compute midpoint (xe, ye) and length `e of e.
6: Let αe = τ̂e × n̂ (scalar)
7: Compute re = αe`e (yc − ye, xe − xc)
8: end for
9: Assemble Rc = [r>e ] and Nc = [τ̂>e ] row-by-row
10: Let M0

c = Rc(R>c Nc)−1R>c
11: Let M1

c = 1
2Tr (M0

c)
(
I−Nc(N>c Nc)−1N>c

)
12: Compute Mc = M0 + M1

13: end for
14: return ME = ∑

c Mc.

3.2 Boundary Conditions

In this section, we will describe how to fix boundary conditions on our discretization of
Poisson’s problem applied to both forms: (3.7) and (3.9).

It is most straightforward to fix a Dirichlet boundary condition, p = fD, on surface
nodes of the computational mesh, where pressure samples live. Assume that our pressure
samples are ordered such that pressures subject to Dirichlet boundary conditions come
after all other pressure samples:

p =
(

p◦
p•

)
,

where p• samples the function fD at some surface nodes, so p• is known. In the same
fashion, we order the gradient operator:

G =
(
G◦ G•

)
.
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Then we can write (3.7) as

∆tD̃
(
G◦ G•

)(p◦
p•

)
= D̃u∗∗

∆tD̃G◦p◦ = D̃u∗∗ −∆tD̃G•p•, (3.23)

where D̃ = G>M as before. Note that (3.23) is an overdetermined system, however (3.7)
gives a unique solution so we can safely use only the symmetric part of (3.23), namely

∆tD̃◦G◦p◦ = D̃◦u∗∗ −∆tD̃◦G•p•, (3.24)

where D̃◦ = G>◦M. Thus it suffices to solve for unknown pressures p◦ in this modified
system, in order to recover the full vector p. Dirichlet conditions can likewise be enforced
in (3.9). More precisely, we can move known pressure values to the right-hand-side in (3.9)
to form the following system:(

ME D̃>◦
D̃◦ 0

)(
u
λ◦

)
=
(

ME(u∗∗ −G•λ•)
0

)
. (3.25)

Note that this system is still symmetric.
Enforcing Neumann boundary conditions requires more work. In fact, we must refer

to the weak formulation of the MFD discretization from Appendix A to determine how
to enforce them. First we need to introduce some notation to describe the computational
mesh on the surface.

Notation 3.2.1. Let NSV denote the number of vertices on the surface of the discrete
mesh. Then group all surface vertices ~xi = (xi, yi) into one vector x ∈ R2NSV , where
x2i = xi and x2i+1 = yi. In the same manner let v ∈ R2NSV denote the vector of all
surface velocity vectors ~vi = (ui, vi) at surface vertices. Furthermore, we assume that the
vertices are ordered in a clockwise direction where vertex at index i is preceded by vertex
i− 1 and succeeded by a vertex i+ 1. To keep our exposition simple, we assume a single
closed loop in our discretization with identity ~xNSV +1 = ~x1 on the surface, however this
can easily be extended to any number of closed loops representing individual separated
bodies of liquid. This allows us to denote each surface edge connecting vertices i and
i + 1 by ei,i+1, and its corresponding edge vector by ~ei,i+1 = ~xi+1 − ~xi where its length
is given by `i,i+1 = ‖~ei,i+1‖ and ‖ · ‖ is the standard Euclidean norm. We will also use
`i = (`i−1,i + `i,i+1)/2 to denote the length of the patch of the surface curve local to vertex i.
Furthermore, for consistency, we assume that the edge tangent unit vectors τ̂e introduced
in Section 3.1 are oriented along the surface vertices in the same clockwise direction. This
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allows a shorthand τ̂i,i+1 = τ̂ei,i+1 . Finally, we let n̂i,i+1 denote the outward normal of edge
ei,i+1 and let n̂i = (n̂i−1,i + n̂i,i+1)/‖n̂i−1,i + n̂i,i+1‖ be the vertex normal. We will use this
notation below as well as in the formulation of surface tension.

The weak formulation from Appendix A prescribes a modification of (3.7) to be

∆tD̃Gp = D̃u∗∗ − Fv (3.26)

where F is an RNV ×R2NSV flux matrix defined for each surface vertex i subject to Neumann
boundary conditions. Define an RNSV × R2NSV edge length matrix L, where

Li,2i = 1
2

{
`i−1,i if ei−1,i lies on the solid boundary
0 otherwise

Li,2i+1 = 1
2

{
`i,i+1 if ei,i+1 lies on the solid boundary
0 otherwise (3.27)

and an R2NSV × R2NSV normal projection matrix N, defined by the 4× 4 block stencil(
N2i,2i N2i,2i+1

N2i+1,2i N2i+1,2i+1

)
=
(
n̂>i−1,i

n̂>i,i+1

)
(3.28)

for each surface vertex i. This normal matrix maps vertex velocities from their x-y coordinate
representation to the normal components of neighbouring surface edges. Now the flux
matrix can be written simply as

F = LN.

This discretization gives pure Neumann boundary conditions if every vertex is subject
to Neumann boundary conditions. However, this is not sufficient in general. A typical fluid
will have some vertices touching a solid surface and some exposed to air. This means that
we need a way to combine Neumann and Dirichlet boundary conditions. Fortunately, this
is straightforward in our exposition. We simply combine (3.26) and (3.24):

∆tD̃◦G◦p◦ = D̃◦u∗∗ −∆tD̃◦G•p• − Fv. (3.29)

Non-homogeneous Neumann boundary conditions can also be easily enforced on (3.9)
using the same formula (3.26). Using (3.8), we can relate the incompressibility part of (3.9)
to (3.26), giving us a new incompressibility condition that enforces the Neumann boundary
condition:

D̃u = Fv.
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We enforce the Dirichlet boundary condition on the contact point, since it is exposed to air.
Other surface vertices that are not exposed to air, must be touching a solid boundary. This
means that F is zero for all surface vertices subject to Dirichlet boundary conditions. Thus,
we can write it as a block matrix F> =

(
F>◦ F>•

)
where F• = 0. Looking at unknown

values only, we can write
D̃◦u = F◦v.

Now combining Dirichlet and Neumann boundary conditions on (3.9), gives us the system:(
ME D̃>◦
D̃◦ 0

)(
u
λ◦

)
=
(

ME(u∗∗ −G•λ•)
F◦v

)
. (3.30)

3.3 Alternative Discretizations

We described one possible discretization for the Poisson problem, however others are possible.
For instance, Lipnikov et al. [2014] proposes to sample pressure at cell centroids (instead of
mesh nodes), and velocity components normal to cell boundaries (instead of tangential).
Additionally sampling pressures at cell boundaries would allow us to fix Dirichlet boundary
conditions more easily. With this discretization it is natural to use a standard finite-volume
type discrete divergence operator, and derive the corresponding discrete gradient operator
using the MFD machinery. However, using this discretization poses significant limitations
to free-surface flow as we describe in Chapter 7.

A thorough treatment of this alternative discretization, including the construction of
corresponding inner product matrices, is presented by Lipnikov et al. [2014]. However, to
the best of our knowledge, this chapter is the first detailed description of the node-edge
based discretization in two dimensions. The extension to three dimensions of the node-edge
discretization requires another inner product matrix defined in [Veiga et al., 2014, §3.4].
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Chapter 4

Surface Tension

So far, we have discussed all the components of a basic simulator for incompressible free
surface flow. This means that we can simulate water-like fluids, but only at large scales,
where surface tension effects are not visible. This chapter will develop a method to add
surface tension to our simulation in order to simulate water-like liquids at smaller scales,
where surface tension effects are prominent.

Recall that pressure projection generates a divergence free velocity field, which ensures
that the simulated liquid is incompressible. This requirement must hold at the end of the
time step, when we move the surface of the liquid accordingly. In this chapter we will
adjust our pressure projection step to accommodate surface tension forces. This gives us
the flexibility to formulate a semi-implicit scheme for surface tension, but first we will
introduce a basic, explicit approach.

4.1 Explicit Scheme

Consider the liquid-air interface. As described in the introduction, near this interface, water
molecules tend to have a stronger attractive force between each other than between air
molecules. This effect manifests in a force on the surface that tends to minimize the total
surface area of the liquid. In the two dimensional case, we write the liquid-air interface
as a set of k closed curves ~αk : Ik → R2 parametrized on some intervals Ik ⊂ R, such that
∂Ω = ∪k{αk(t) : t ∈ Ik }. Then the surface area of the liquid domain in 2D is represented
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by the sum of arc-lengths of curves αk, written as the functional

A[~α] =
∑
k

∫
Ik

∥∥∥∥∥d~αdt
∥∥∥∥∥ dt.

Then, we can write the force of surface tension directly as the negative functional derivative
of surface area:

~fst = −γ δA[~α]
δ~α

, (4.1)

where the surface tension coefficient γ is a physical proportionality parameter describing the
strength of this force. For a water-air interface, γ ≈ 72 mN m−1, but it varies for different
interfaces. We treat γ as a tuning parameter, which allows us to vary the apparent scale of
the simulation. In general, conservative forces minimize an energy function, so we can also
write ~fst = − δU [~α]

δ~α
, where U = γA is the surface energy.

Equation (4.1) can be directly expressed in terms of the discrete domain. Recall
notation 3.2.1 describing the mesh on the surface. We can discretize the force of surface
tension as

fst = −γ∇A(x), (4.2)
where the parameter of A is now a discrete vector x ∈ R2NSV of stacked surface vertex
positions and ∇ is taken with respect to this parameter. The surface area can be explicitly
expressed as

A(x) =
NSV∑
i=1
‖~xi − ~xi+1‖,

and ~xNSV +1 = ~x1 as before. Recall that there can be multiple connected components
representing separated bodies of liquid, in which case wrapping the index NSV + 1 would be
insufficient. To avoid this restriction, one can simply view the vertex i+ 1 in the formula
above as the next connected vertex in the assigned clockwise order. This formulation allows
us to compute the surface tension force directly from the gradient of surface area:(

(∇A(x))2i
(∇A(x))2i+1

)
= ~xi − ~xi−1

‖~xi − ~xi−1‖
− ~xi+1 − ~xi
‖~xi+1 − ~xi‖

.

Then the surface tension force at vertex i can be written as

~fi =
(

f2i
f2i+1

)
= γ(τ̂i,i+1 − τ̂i−1,i), (4.3)

where τ̂i,i+1 denotes the edge tangent unit vector between vertices i and i+ 1. We dropped
the subscript st for brevity, and will do so for the remainder of this chapter.
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In the explicit scheme, we are satisfied with computing the surface tension force from
the surface in its configuration at the current time step. This approach imposes a somewhat
restrictive stability condition on the time step [Brackbill et al., 1992]

∆t ∝ ∆x3/2
√
γ
.

However, this is not too restrictive for small surface tension coefficients, so it may be
sufficient for some applications in animation.

There are various ways to incorporate surface tension effects into simulation. We begin
with a very straightforward one, in which surface tension is added to the pressure projection
step discretized in (3.7). It involves modifying fD in our Dirichlet boundary condition. We
know from the Young-Laplace equation [de Gennes, 1985] that the jump in pressure at the
liquid-air interface is proportional to curvature. In two dimensions, this is can be expressed
as ∆p = γκ, where κ is the signed curvature of the boundary curve. Since we assume that
air pressure is zero in our calculation, it must be that in the presence of surface tension, the
pressure at the surface of the liquid must be exactly equal to this pressure jump ∆p. Note
that curvature is given by the second derivative of the boundary curve. On our discrete
domain, at vertex i, curvature can be approximated by the discrete Laplacian:

(κn̂)i = `−1
i (τ̂i,i+1 − τ̂i−1,i). (4.4)

This discretization is used for surface tension by Schroeder et al. [2012] as well as Zheng
et al. [2015]. Now recall that fD is sampled on the surface by p•. Thus adding surface
tension to (3.7) is equivalent to enforcing a non-homogeneous Dirichlet condition on each
vertex i, equal to the pressure jump

∆pi = γn̂>i (κn̂)i. (4.5)

The normal n̂>i above is used to extract the signed mean curvature scalar κ, from the
mean curvature normal vector (4.4). Using equations 4.3 and 4.4, we express the pressure
boundary condition in terms of the surface tension force

p• = L̃−1Ñf , (4.6)

where L̃ is an RNSV × RNSV diagonal length matrix defined by L̃i,i = `i, and Ñ is an
RNSV × R2NSV normal projection matrix defined by(

Ñi,2i Ñi,2i+1
)

= n̂>i ,

for each vertex i.
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4.2 Semi-implicit Scheme

As already mentioned above, the explicit surface tension formulation bears a hefty time
step restriction, especially for large surface tension forces. In this section, we will reduce
the impact of this issue by adopting a semi-implicit method first introduced by Misztal
et al. [2012]. We also show that this formulation is equivalent to the normal-directional
semi-implicit surface tension model presented by Schroeder et al. [2012].

First, recall that the linear system (3.9) solves the constrained quadratic programming
problem (3.10) as prescribed by the KKT conditions. Since surface tension force minimizes
the surface energy, it is natural to add the energy term to the objective function:

1
2(u− u∗∗)>M(u− u∗∗) + U(x + ∆tv). (4.7)

In order to build an implicit scheme, we evaluate the energy at the next time step, which
we get using a backwards Euler step as v are velocities at the next time step. Although U
is non-linear, we can approximate it using a second order Taylor approximation:

U(x + ∆tv) = U(x) + ∆tv>∇U(x) + 1
2∆t2v>∇∇U(x)v +O(∆t3). (4.8)

Furthermore, the quadratic program minimizes over MFD edge based velocity components
u, so we need an interpolation scheme H to map u to full velocity vectors on surface
vertices in v. We will build this matrix in Section 4.2.2. For now, assuming we have this
interpolation matrix, we can write the new objective function in terms of u:

1
2u>Mu− u>Mu∗∗ + ∆tu>H>∇U + 1

2∆t2u>H>∇∇UHu,

where the energy derivatives are evaluated at x. Grouping first and second order terms
in the new objective function together forms a new quadratic optimization problem in
standard form:

minimize 1
2u>(M + ∆t2H>∇∇UH)u− u>(Mu∗∗ −∆tH>∇U)

over u ∈ RNE

subject to D̃u = 0,

which can be solved with the KKT system(
A D̃>
D̃ 0

)(
u
λ

)
=
(

b
0

)
, (4.9)
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where A = M + ∆t2H>∇∇UH and b = Mu∗∗ − ∆tH>∇U as expected. Enforcing
boundary conditions on this system is identical to (3.30). However, in contrast to our
formulation for explicit surface tension, we use zero Dirichlet boundary conditions since
surface tension forces are applied directly in the system.

From Section 4.1, we know how to compute the energy gradient, since it is the negative
of the surface tension force. Thus from equations 4.2 and 4.3 we get the expression for the
energy gradient:

(∇U)i = −~fi = γ(τ̂i−1,i − τ̂i,i+1). (4.10)

Thus it remains to determine the energy Hessian (i.e. ∇∇U) and the interpolation matrix
H.

4.2.1 Building the Hessian of surface energy

For brevity, we will use the shorthand ~ei = ~ei,i+1 = ~xi+1− ~xi for surface edge vectors, which
is unambiguous since edge vectors form a chain following the order of surface vertices.
Essentially ~ei is an edge starting at vertex i. In a similar fashion, we define τ̂i = ~ei/‖~ei‖.
Starting from the formula for negative energy gradient in (4.3), we compute its Jacobian,
giving us exactly the negative Hessian of U . Thus, for each vertex i, we can write rows 2i
and 2i+ 1 of −∇∇U as

(
(−∇∇U)2i

(−∇∇U)2i+1

)
=

· · · 0 ∂fxi−1
∂xi−1

∂fxi−1
∂yi−1

∂fxi
∂xi

∂fxi
∂yi

∂fxi+1
∂xi+1

∂fxi+1
∂yi+1

0 · · ·

· · · 0 ∂fyi−1
∂xi−1

∂fyi−1
∂yi−1

∂fyi
∂xi

∂fyi
∂yi

∂fyi+1
∂xi+1

∂fyi+1
∂yi+1

0 · · ·

 , (4.11)

where the terms in the first and last two rows wrap around. We do this directly using
a symbolic computation package [SymPy Development Team, 2014]; Appendix B gives
the code. We will write down the Hessian in a form of a recurring stencil or pattern that
appears in the matrix, from which one can build the whole sparse matrix. For each surface
edge ~ei, define two 2× 2 matrices

Ei = γ

‖~ei‖

(
1 0
0 1

)
and Ki = Ei − γ

τ̂iτ̂
>
i

‖~ei‖
.

Then the Hessian of U can be built from the following stencil repeated for each vertex i:Ki +Ki−1 −Ki

−Ki
. . .

 . (4.12)
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This energy Hessian can be interpreted as the negative derivative of the force of surface
tension. Hence this formulation is equivalent to what is called the normal-directional
implicit surface tension model in [Zheng et al., 2015], but also derived in [Schroeder et al.,
2012]. This draws an equivalence between the variational formulation of semi-implicit
surface tension in [Misztal et al., 2012] and the normal-directional model. For improved
stability it is sometimes preferred [Zheng et al., 2015] to use a relaxed approximation for
the Hessian given by the stencil Ei + Ei−1 −Ei

−Ei
. . .

 .
This is referred to as the all-directional implicit model, since it allows the Hessian to act in
the tangential direction to the surface. This is evident from the definition of Ki where a
tangential projection is subtracted.

4.2.2 Building the interpolation matrix H

A keen eye will notice that using a first-order Taylor approximation for surface energy will
yield an explicit surface tension scheme. The difference between this new explicit scheme,
and our scheme presented in Section 4.1 is in the way we apply the force. Consider this
hypothetical explicit scheme where we use the energy approximation

U(x + ∆tv) ≈ U(x) + ∆tv>∇U(x),

instead of (4.8). Following the same steps as for our implicit formulation, we form the KKT
system (

M D̃>
D̃ 0

)(
u
λ

)
=
(

Mu∗∗ −∆tH>∇U
0

)
. (4.13)

In Section 4.1, we applied the surface tension force as a pressure jump using a Dirichlet
boundary condition. It is reasonable to expect both formulations to give the same result.
Thus we compare our system (4.13) to the system (3.25), where the Dirichlet boundary
conditions are set to the pressure jump caused by surface tension. Looking at the right-
hand-side of both equations, it is evident that we should have

∆tH>∇U = ∆tMG•p•. (4.14)

Noting that ∇U = −f , then using equation (4.6), we can write (4.14) as

H>f = −MG•L̃−1Ñf .
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Finally, since the interpolation should work for any surface tension force, we conclude that

H> = −MG•L̃−1Ñ. (4.15)

This subsection concludes the semi-implicit surface tension formulation and we have built
all necessary components for free-surface liquids. In the next section, we will demonstrate
stability of the semi-implicit formulation. We will also extend this model to account for
solid interaction in Section 4.4.

4.3 Stability Results

The semi-implicit surface tension scheme allows us to take larger time steps in our simulations.
Consider, a square of liquid floating in space, not subject to gravity, but subject to surface
tension forces. Setting the surface tension coefficient and time step close to the theoretical
upper bound imposed on the explicit surface tension scheme [Brackbill et al., 1992], we can
observe where the explicit scheme fails. Figure 4.1 illustrates the stability advantage that
the semi-implicit scheme has over the explicit surface tension scheme. Increasing the time
step further will cause the simulation with explicit surface tension to fail. Further tests are
compiled in the works of Schroeder et al. [2012] and Zheng et al. [2015] verifying stability
of the semi-implicit scheme for different grid sizes and time steps.

4.4 Contact Angles

As we have mentioned before, surface tension is caused by an imbalance between molecular
forces at the interface between two media. In the previous sections, we described how to
simulate this effect for exactly two media, where the coefficient of surface tension was given
as a constant γ. In a more complex scenario, we may encounter interfaces between multiple
media. For instance a water droplet resting on a solid surface. In this case, there are three
interfaces: liquid-air, liquid-solid and solid-air that contribute to the shape of the droplet
at rest configuration. Surface tension is different at each of these interfaces, and so its force
will be scaled by distinct coefficients, which we will denote by γla, γls and γsa respectively.
Accurately treating surface tension at the point where these interfaces meet (contact point)
will allow us to simulate hydrophobic and hydrophilic surfaces. Hydrophilic surfaces attract
water such that it spreads evenly when in contact, while hydrophobic surfaces repel water
into tiny beads. This phenomenon is responsible for various visual effects that water can
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Figure 4.1: Oscillating square liquid under explicit surface tension (top row) and under semi-
implicit surface tension (middle row), with surface tension coefficient γ = 0.005, grid size ∆x = 0.02,
grid resolution 128× 128 and time step ∆t = 0.025 s. Top two rows contain snapshots at times
t = 0.0, 1.0, 3.5, 6.5, 9.0, and 21.0 seconds from left to right for the appropriate scheme. Observe
the noise on the surface of the liquid with explicit surface tension (top row) due to instabilities. A
side-effect of this surface noise is the aggressive volume loss in the simulation. The simulation
fails in the explicit case for larger time steps. Semi-implicit surface tension is stable even for a
much larger time step ∆t = 0.08 s (bottom row).
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exhibit when in contact with solid surfaces as seen in Figure 4.2, which is undoubtedly
important in computer graphics and animation.

“Water droplets on a geranium leave” by Philip Milne,
used under CC BY-NC-ND-2.0

“Warm And Wet” by Pekka Nikrus,
used under CC BY-NC-SA-2.0 / cropped from original

Figure 4.2: Examples of hydrophobic (left) and hydrophilic (right) surfaces.

Looking closely where air, liquid and solid meet, we can identify the forces acting on the
contact point. It is sufficient to consider the forces of surface tension in order to identify
the shape of a droplet at equilibrium.

~f sa ~f ls

~f la

Figure 4.3: Forces of surface tension acting on the contact point of the liquid resting on a solid
surface.

We will denote the surface tension forces along the liquid-air, liquid-solid, and solid-air
boundaries by ~f la, ~f ls, and ~f sa as shown in Figure 4.3, where each is proportional to the
appropriate surface tension coefficient. Then assuming the solid boundary is smooth at
the contact point, it is evident that the net force tangential to the solid boundary is given
by ~f s = ~f ls + ~f sa, where ~f sa points in the opposite direction of ~f ls. This makes it easy
to adapt ~f sa into our discretization, since we do not explicitly keep track of the solid-air
boundary. On our discrete mesh Ω, we can extend our model of surface tension to account
for these various forces. At each vertex i on the liquid-air or liquid-solid boundaries, we
simply use the original formula (4.3), with appropriate coefficients:

~fi = γla(τ̂i − τ̂i−1) for a liquid-air vertex
~fi = γls(τ̂i − τ̂i−1) for a liquid-solid vertex.
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(a) γls = 0.0014, γsa = 0.0005 (b) γls = 0.0005, γsa = 0.0014 (c) γls = γsa

Figure 4.4: Capillary action where γla = 0.001 in all 3 simulations. (a) shows a hydrophobic
solid surface with an expected contact angle θs = 154◦. (b) shows a hydrophilic solid surface with
θs = 26◦. (c) shows a surface that is neither hydrophobic nor hydrophilic with θs = 90◦.

Note that (4.3) is essentially a sum of two forces along each of the tangential directions
away from the vertex. This is precisely the viewpoint taken in [Schroeder et al., 2012],
where the forces are considered on a per-segment basis. Thus the force on each vertex i can
be written as the sum of forces

~fi = ~fi,i+1 + ~fi,i−1

where ~fi,j is the surface tension force of vertex j pulling on vertex i. Thus ~fi,i−1 = −ατ̂i−1

and ~fi,i−1 = βτ̂i, where α and β are some potentially distinct surface tension coefficients.
Now for the purpose of exposition, we assume that vertex i+ 1 is on a liquid-solid interface
and vertex i− 1 is on the liquid-air interface1. Then we can describe the surface tension at
the contact vertex as

~fi = ~f si,i+1 + ~f lai,i−1

= (γls − γsa)τ̂i − γlaτ̂i−1, (4.16)

where we have incorporated forces ~f sa and ~f ls into ~f s without an explicit representation
for the solid-air boundary.

Now that we can express the force of surface tension at every vertex, we can directly
use it in our explicit model for surface tension presented in Section 4.1. Furthermore,
looking at (4.11) we can also easily find the new Hessian of U without having to recompute

1For the reverse scenario we simply swap the coefficients of the tangent vectors in (4.16).
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the derivatives. Redefine Ei and Ki with γ = γla for each liquid-air edge, and with
γ = γls − γsa for each liquid-solid edge. Using the same stencils for the normal-directional
and all-directional implicit models from Section 4.2.1, we get a semi-implicit surface tension
model capable of simulating hydrophobic and hydrophilic surfaces.

For the purposes of visual simulation, it is rather inconvenient to have to manually
choose all surface tension coefficients, and up to this point it is unclear how to pick these
coefficients to achieve a specific behaviour for liquids in contact with solids. Luckily, there
is a convenient relationship between these three coefficients at equilibrium given by Young’s
relation in terms of geometric contact angle θs between the liquid and solid surfaces near
the contact point [de Gennes, 1985]. Young’s relation is given by

γsa − γls − γla cos(θs) = 0. (4.17)

This relationship characterizes the spreading and beading of water on hydrophilic and
hydrophobic surfaces respectively as illustrated in Figure 4.5. Equation 4.17 simplifies the
control of surface tension effects in our model. More specifically, all occurrences of γls − γsa
above, can be replaced by −γla cos(θs), leaving us with just two parameters: γla, which
controls the strength of surface tension at the liquid-air interface, and θs, which controls
whether a solid surface is hydrophobic (θs > 90◦) or hydrophilic (θs < 90◦). Figure 4.4
demonstrates capillary action on hydrophobic and hydrophilic surfaces.

γsa γls

γla

θs γsa γls

γla

θs

Figure 4.5: Young’s relation on hydrophilic (left) and hydrophobic (right) surfaces.

4.4.1 Boundary Conditions at the Contact Point

We have identified the forces responsible for generating various contact angles. It remains
to ensure that these forces are applied correctly in our model. Recall the pressure boundary
condition defined in (4.6). This definition of pressure jump also defines our interpolation
H as seen in (4.14), which ultimately defines how we apply surface tension forces in our
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semi-implicit formulation. Looking at equations 4.4 and 4.5 once again more closely, we
have the relationship:

∆pi = γ`−1
i n̂>i (τ̂i − τ̂i−1),

where n̂i is a uniquely (in 2D) defined normal that projects the curvature vector (κn̂)i
onto the normal to extract the signed curvature value. While originally, n̂i was a normal
approximated at a surface vertex, now we can compute it exactly since we know the desired
contact angle forming a tangent to the surface. Hence, we can compute the normal from
the adjacent liquid-solid segment, say τ̂i as before, giving

n̂i = τ̂i

(
sin(θs − π) − cos(θs − π)
cos(θs − π) sin(θs − π)

)
,

where the matrix gives a counter-clockwise rotation by 3π
2 − θs radians. Of course if τ̂i−1

was the liquid-solid segment, the same rotation applies but in a clockwise direction, and if
the vertices were ordered in a counter-clockwise order, the rotations are swapped.

Our goal now is to incorporate the new surface tension force in equation 4.16 to generate
the pressure jump condition that vanishes when the desired contact angle is achieved. By
rearranging terms, we can directly replace the original surface tension force (4.3) part with
(4.16) to get

∆pi = `−1
i n̂>i

~fi,

however, this gives a non-vanishing pressure jump at equilibrium as can be seen in Figure 4.6
where the force projected onto the curvature normal ~fpi , maintains a normal component to
the solid surface.

air

τ̂i

solid

τ̂i−1

liquid θs

~fi
n̂i

~fpi

Figure 4.6: Surface tension force ~fi on the contact point at equilibrium, does not vanish when
projected onto the normal n̂i.

We ameliorate this effect by projecting the curvature normal n̂i directly onto the solid
surface before projecting ~fi. The projected normal is always given by n̂pi = (n̂>i τ̂)τ̂ , where
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τ̂ is the liquid-solid segment τ̂i or τ̂i−1. This modification achieves the desirable result as
illustrated in Figure 4.7.

air

τ̂i

solid

τ̂i−1

liquid θs

~fi
n̂i

n̂pi

Figure 4.7: Surface tension force ~fi on the contact point at equilibrium, vanishes when projected
onto n̂pi .

Finally, it remains to substitute the original approximated surface normal for our
projected normal n̂pi at contact points, when building the interpolation matrix from (4.15).
This adapts the semi-implicit surface tension formulation to handle contact angles.
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Chapter 5

Mesh Generation

Up to now, we have built the tools to handle surface tension effects and simulate contact
angles, but we have not discussed precisely how to represent and evolve the liquid in our
simulations. In this chapter, we will describe the approach we take to generating a mesh
suitable for fluid simulation. Then we will discuss the various computational stability issues
that can arise and how to fix them.

In Section 6.2, we mentioned that the computational mesh consists of a regular grid on
the interior, and cut cells on the surface. Following the algorithm depicted in Figure 5.1, we
will make this precise. First, consider a surface mesh representing the position of the liquid
surface after its vertices have been advected from the previous time step (or the initial
configuration), suspended in a regular grid. This mesh, made up of connected segments, is
first intersected with the background grid. Then a marching-squares-like algorithm [Müller,
2009] generates a segment per grid cell that produces a cut cell near the surface of the
mesh. The only deviation from the marching squares algorithm is that we use explicit grid
intersections to generate cut-cells, instead of having to interpolate an implicit function to
find these intersections. In effect, avoiding interpolation helps prevent numerical smoothing
artifacts, which would contribute to volume and feature loss in our simulation. The resulting
mesh consists of these newly generated cut cells along with all grid cells interior to our
liquid surface.

This approach requires us to store explicit mesh geometry only for the surface cells,
since on the interior all cells are square. As previously mentioned, the matrix M is diagonal
for interior cells and can be precomputed once at the start. For this reason, the MFD
method also lends itself well to unrestricted quad-tree optimizations, without the need
for auxiliary schemes to construct well behaved discrete Laplacians [Losasso et al., 2005].
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Figure 5.1: Generating a cut-cell mesh. Starting with an initial surface mesh (top-left), we
compute grid intersections (top-right), construct marching squares segments (bottom-left), and
finally cut out cells near the surface (bottom-right) outline with black lines. The remaining square
cells on the interior of the liquid are referred to as interior cells.
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More precisely, one can precompute Mc for a variety of different quad-tree cells, and reuse
them throughout the tree as needed taking advantage of various symmetries. Of course
unrestricted quad-trees can have arbitrarily varying gradings between neighbouring cells,
so for some cells, Mc would need to be computed on demand. For more details on solving
the Poisson problem on quad-trees including a summary of competitive methods see the
work by Batty [2015].

Unfortunately, this approach to creating meshes can produce small angles, when the
initial surface is close to a grid node. As a result, the pressure projection step can suffer
from instabilities. In particular small angles cause a restriction on the mesh regularity
condition 3.0.1. It is not hard to see that a small angle in a cell can restrict the ratio in
(3.1) for admissible triangulations under refinement. Consider a triangle shaped cut-cell
with a small angle θ produced as a result of our meshing methodology. Any subdivision of
such a triangle is guaranteed to contain a polygon retaining the angle θ. Since the stability
condition 3.1.4 (and hence the spectral bound on M) depends on this ratio bound, the
conditioning of the matrix M also suffers. Fortunately, a simple remedy for this problem is
to collapse small edges near the surface of the mesh since the MFD method is not restricted
to particular polygonal shapes. This method is discussed in detail in Section 5.3.

Another shortcoming of our approach comes from the surface tension formulation. In
particular looking closely at the interpolation matrix H defined in (4.15), we find its
dependence on the inverse of surface edge lengths encoded in L̃−1. In the presence of the
edges with lengths significantly smaller than other edges on the surface, the diagonal matrix
L̃−1 can become nearly singular. This problem motivates a more complex solution, which
involves a relaxation step on the surface mesh. Section 5.4 covers the details of relaxing
vertices on the surface to form a more uniform edge length distribution.

Our approach to preserving the contact point using clipping (see Section 5.2), may
produce poor quality cells that can also contribute to poor conditioning of M. In particular,
some small angles can arise at the contact point, which cannot be removed by collapsing
small edges. We noticed that merging such cells with their neighbours can significantly
improve stability.

Of course numerical stability issues can arise when edge lengths approach the limits of
available floating point precisions. In this case, we simply merge vertices together. This
doesn’t produce significant visual artifacts because this type of operation happens rarely
and at scales on the order of machine epsilon, so not typically visible.

Before we proceed to dealing with these issues, we first need to describe how the fluid
moves from one time step to the next, and how liquid and solid surfaces are coupled.
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5.1 Moving the Surface Mesh

So far we have subtly mentioned the need to move a surface mesh to simulate the motion of
the liquid, but we have not precisely defined what we mean. This is indeed a very important
part of simulating liquids, because the motion of the surface is what characterizes how we
perceive the liquid. We will discuss two methods to advect the surface mesh through the
grid and compare the two qualitatively.

Recall that after our pressure projection step, we get a discretization of the divergence
free velocity field ~u(t + ∆t) for the next time step, where ∆t is the time step and t is
the current time. This naturally allows us to use a stable backward Euler step given the
position of the surface ~x(t) at the current time step to get the vertex positions for the next
time step ~x(t+ ∆t) as

~x(t+ ∆t) = ~x(t) + ∆t~u(t+ ∆t). (5.1)

Now looking at the precise discretizations of our velocity and position variables, we note
that velocities u ∈ RNE are stored on the surface edge midpoints, but x ∈ RNSV samples the
liquid surface at surface vertices. Thus we cannot simply apply the formula (5.1) directly on
our discretization. An attentive reader may notice that in our surface tension discretization
we constructed an interpolation operator H that maps tangential edge velocity components
in u to full vertex based velocities v ∈ R2NSV on the surface. Indeed, this allows us to apply
the backwards Euler step as

xt+∆t = xt + ∆tHut+∆t.

This is the simplest method for moving the surface and it stays consistent with the MFD
methodology, thus we will refer to it as MFD-surface-advection. However, as we will see
later, this approach has its shortcomings.

Alternatively, we may build a separate interpolation operator with a focus on velocities,
as opposed to forces, which were the focus when building H>. First, consider a vertex
at the surface of the mesh ~xi. In our discretization ~xi is incident to some edges, which
we define by the set Ei = { e : e is incident to i }. Let ui ∈ R|Ei| denote the vector u
restricted to edges incident to vertex i, and let vi = (v2i,v2i+1)> be a shorthand for the
target velocity at vertex i. Then we can write the relationship between ui and vi as a
least-squares system ui = H̃ivi, where each row of H̃i representing an incident edge is given
by (H̃i)e = τ̂>e . Solving this small least-squares system at every vertex and combining the
resulting velocities into one vector will give us vt+∆t ∈ R2NSV as desired. Sometimes the
only tangent vectors incident to a vertex i are parallel. In this case, we add another row
into the least-squares matrix H̃i with (0, 1) or (1, 0) to resolve the missing horizontal or
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Figure 5.3: MFD-surface-advection (top row) is compared to LS-surface-advection (bottom row)
to see the visual difference in the full “falling droplet” simulation.

vertical velocity component respectively. On the right hand side, we add a velocity sample
from the grid to ui. Finally, this allows us to apply the backwards Euler step once again as

Figure 5.2: Droplet deformed
under LS-surface-advection (top) and
MFD-surface-advection (bottom).

xt+∆t = xt + ∆tvt+∆t.

Naturally we will refer to this method as LS-surface-advection.
Notice, from the appearance of N in the definition of H,

that we can only build vertex velocities v normal to the surface.
This is the main shortcoming of the MFD-surface-advection
approach. In contrast, the LS-surface-advection approach
resolves the full velocity at a surface vertex. To illustrate
the difference, we move a circular droplet through the grid
with a constant downward velocity. After some time, the
droplet deforms from its original circular state as shown in
Figure 5.2. As we can see the droplet deforms significantly
from its original shape under MFD-surface-advection. On the
flip side, the MFD-surface-advection method produces a more
dynamic simulation, while the LS-surface-advection naturally
smooths the velocity field and hence dampens the simulation.
Consider Figure 5.3 to see that the MFD-surface-advection
scheme produces finer details on the liquid surface like droplet
pinch-off in the third frame.

Finally, after moving surface vertices, we are left with a
surface mesh composed of connected line segments. From this
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point, we can create a simulation cut-cell mesh as we have seen in Figure 5.1. This concludes
all the fundamental steps of our simulator. What follows are methods we chose to improve
the stability and quality of the simulation. However, it is important to note that without
these improvements, the simulation is unstable. It may be possible to find alternatives,
but we found the combination of the following meshing techniques to be both simple and
robust.

5.2 Liquid-Solid Mesh Generation

So far we have talked about contact points between liquid-air and liquid-solid boundaries,
but we have not mentioned how these are formed. In this section, we will describe this
process in detail. Our goal is to create a method to track contact points accurately to
preserve the visual aesthetics of surface tension at the point of contact.

To start we need two initial meshes: one for the liquid surface L and one for the solid
surface S. First, we execute the algorithm in Figure 5.1 on L to get a set of convex cells L′.
Then we can execute the first three steps of the same algorithm on S giving us a new solid
segment mesh S̃ aligned with the grid. Alternatively, starting with an implicit function φ
whose zero level set approximates S, we can run a standard marching squares algorithm on
φ = 0 to build S̃ instead. In any case, S̃ is a grid aligned mesh with one surface segment
per grid cell. Then for every liquid cell c ∈ L′, containing a segment s ∈ S̃, we clip c against
s generating a new clipped cell c′ with a portion of the boundary lying on the solid surface.
Figure 5.4 shows the five arm flower from Figure 5.1 clipped against a circular solid cavity.
It is worth noting that all cells c are convex and have mostly axis aligned boundaries,
which makes clipping especially simple. In contrast, clipping arbitrary non-convex meshes
is error-prone and typically requires sophisticated algorithms with complicated edge cases.
This is not such a crippling issue in two dimensions, but becomes more important with 3D
implementations.

This method allows us to represent the contact point within a grid cell. That is, the
point need not lie on the boundary of a cell. However, at the very next time step, the
surface mesh representing the liquid surface will move and our mesh generation algorithm
will smooth away the contact point because the standard marching cubes algorithm is not
able to represent surface details within a grid cell. To see this clearly, consider Figure 5.5,
which illustrates a moving liquid boundary that gets smoothed away during the next
mesh generation step. To alleviate the problem we could use an extended marching cubes
approach [Kobbelt et al., 2001], which is able to preserve the contact vertex. However,
to keep our implementation simple, we chose to simply project all surface vertices on the
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Figure 5.4: Liquid mesh of a five arm flower is clipped against a circular cavity (green).

solid

liquidair

moved
segment

contact
vertex solid

liquidair

new
segment

solid

liquidair

moved
segment

detail
preserved clipped

region

Figure 5.5: Surface with a contact vertex at time t (left) moves to the next configuration at
time t+ ∆t losing the contact point representation due to the limitations of marching squares
(middle). This issue is resolved by moving the contact vertex into the solid such that it intersects
a grid edge (before moving the liquid-air segment) and clipping (right).
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small angle θ

Figure 5.6: An example of a mesh moving to the right, closer to the grid node, potentially
forming triangles with small angles. Grid lines are dashed in grey, while mesh edges are represented
by thick black lines.

solid boundary (including the contact vertex) into the solid before generating the new
simulation mesh. If we move the vertices into the solid by twice the size of a grid cell ∆x,
then our clipping step will guarantee to preserve the contact point as shown on the bottom
of Figure 5.5. Note that we move the contact vertex in the direction parallel to the edge
vector toward the interior of the solid, while other solid vertices are simply moved along the
normal of the solid surface. Although this method limits the thickness of admissible solids,
we can increase the grid resolution to allow for thinner solids. Furthermore, this approach
prevents clipping nearly parallel segments against each other since the fluid surface at the
solid boundary is moved into the solid.

5.3 Collapsing Small Edges

Recall that our simulator moves an explicit surface mesh through a regular grid and creates
a cut cell interior mesh at every step. This means that it is possible to generate cells with
small angles quite easily. Consider Figure 5.6, which illustrates a mesh moving closer to a
grid node. This example shows pathological cell structures that can be generated with cut
cell geometry. In order to avoid cells with small angles, we will simply collapse the smallest
interior mesh edge near a grid node if the edge is smaller than some threshold δ. More
precisely, iterating over each interior grid node, we find the smallest edge e, and if |e| < δ
then we remove it by stitching the end points of e together to maintain mesh topology.

50



Figure 5.7: Mesh with small edges removed.

Collapsing a small edge on the interior mesh may produce degenerate cells with zero area,
if for instance, the edge was part of a triangle cell, which is exactly the case in Figure 5.6.
Thus an extra step is required to remove any possible resulting degenerate cells. Using this
technique on cut cell geometry naturally guarantees that all interior edges in the mesh will
have length greater than or equal to δ. Figure 5.7 illustrates how this method removes
the leftmost interior edge arising in Figure 5.6. In addition, this method of removing
small interior edges leaves the original surface mesh intact. In contrast, other remeshing
techniques often seen with finite-element methods (e.g. [Clausen et al., 2013]), which make
changes to the surface mesh, exhibit flickering effects on the surface. Furthermore, since the
MFD method works with irregular cells, no further triangulation steps are needed, whereas
many standard FEM schemes for unstructured meshes require triangular elements.

Lastly, note that the above operations of collapsing edges, forces the MFD mesh to be
slightly misaligned with the background grid near the surface of the liquid. As a result, we
cannot simply copy all MFD velocity components to the grid for use in velocity advection
at the next time step (see Algorithm Unified-MFD for reference). Thus for those velocity
components misaligned with the grid, we propose the following interpolation scheme. Note
that the rest of the grid velocity components are exactly aligned with the MFD mesh, so
we can simply copy them directly onto the grid. This interpolation scheme is needed prior
to velocity advection, so before between lines 4 and 5 in Algorithm Unified-MFD. Note
that we also need to copy/interpolate the grid velocities onto the MFD mesh before the
incompressibility step on line 7 of Algorithm Unified-MFD. We can use a simple bilinear
interpolation technique here, to get a velocity sample on an MFD edge that is misaligned
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Algorithm 3 MFD-Grid-Interpolation
1: Compute a full velocity vector ~vn for each MFD node n using a least squares scheme as

employed in Section 5.1.
2: Compute a full velocity vector ~vc on the centroid of every MFD surface cell c.
3: for each grid edge e do
4: Let ~xe be the midpoint of edge e.
5: if ~xe lies inside a surface MFD cell c, then
6: Let (n,m) be an MFD edge that was aligned with e before small edge collapse.
7: Let wn, wm and wc be the barycentric coordinates of ~xe with respect to the triangle

formed by ~xn, ~xm and ~xc, such that ~xe = wn~xn + wm~xm + wc~xc.
8: (vx, vy)← wn~vn + wm~vm + wc~vc.
9: ue ← vx if e is horizontal, or vy if e is vertical.
10: print the new grid velocity ue.
11: end if
12: end for

with the grid. It’s important to note that this extra interpolation step between grid and
MFD velocities is only required be cause we employed a semi-Lagrangian, grid-based velocity
advection scheme. When using a particle based velocity advection scheme, it is sufficient to
interpolate directly between particles and the MFD mesh.

5.4 Mesh Relaxation

We now shift our focus to small edges on the surface of the simulation mesh. It is better to
avoid making explicit changes to the surface mesh as it will break temporal coherence in
the mesh geometry from frame to frame. This causes spurious flickering artifacts as the
mesh moves through the grid, and more importantly, it causes sudden intermittent changes
in curvature estimates, and thus in surface tension forces, which can lead to instability.
Consequently, we propose a simple greedy relaxation step on the surface mesh that we will
only use to smooth the surface tension force applied to each surface vertex and scaled by the
lengths `−1

i . More specifically, we will build an auxiliary surface mesh S that approximates
the original mesh T , but maintains a more uniform spacing between neighbouring vertices.
Then we will compute the forces scaled by `−1

i on S and linearly interpolate the result back
to T . Thus, we need a smoothing operator S that will modify our interpolation matrix H,
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originally defined in (4.15), as follows:

H>S = −MG•ÑSL̃−1
2 , (5.2)

where we swapped the order of the normal projection Ñ and L̃−1
2 , which is defined by

repeating each diagonal entry of L̃−1, or more exactly by the Kronecker product

L̃−1
2 = L̃−1 ⊗

(
1 0
0 1

)
.

Note that this swapping does not change the original matrix H> since L̃−1Ñ = ÑL̃−1
2 .

Recall that H> is applied to full force vectors on surface vertices of T . The new operator
H>S acts on force vectors on surface vertices of S instead. Thus to break down equation 5.2,
surface tension forces f defined on the smoothed surface vertices of S are first scaled by
the inverse lengths `−1

i by L̃−1
2 . Then the result is interpolated back onto the original mesh

T by S. Finally a pressure jump is computed by projecting the result onto the curvature
normal using Ñ and the rest is unchanged from equation 4.15.

To build the mesh S, first consider a vertex i on the surface of T , which connects a
small edge ei−1,i to a large edge ei,i+1 as depicted in Figure 5.8a. Then move the vertex
~xi to a new position ~si = ti~xi + (1− ti)~xi+1 such that ‖~si − ~xi−1‖ = ‖~si − ~xi+1‖ as shown
in Figure 5.8b. If on the other hand edge ei−1,i is much larger than ei,i+1, naturally we
move ~xi towards ~xi−1 instead. This procedure repeated for each vertex creates the mesh S
with more evenly distributed edge lengths with one exception. Suppose that ~xi is moved
towards ~xi−1, but ~xi−1 is moved towards ~xi. Then the new edge between ~si and ~si−1 can
potentially become arbitrarily small. We resolve this issue by simply clamping the value
of ti between 0.6 and 1 to ensure such edges do not creep up in our relaxation algorithm.

~xi~xi−1

~xi+1

`i−1,i

`i,i+1

(a) Original surface mesh T , at vertex ~xi,
where `i−1,i � `i,i+1.

~xi~xi−1

~xi+1

~si

(b) Relaxation step moving vertex ~xi to a
new position ~si.

Figure 5.8: Greedy relaxation step moving a vertex ~xi to a position to improve the spacing
between neighbouring vertices.
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Algorithm 4 Surface-Relaxation
1: for each surface vertex ~xi do
2: ~e← ~xi+1 − ~xi−1
3: if `i,i+1 > `i−1,i then

4: ti ←
‖~e‖2

2~e · ~ei,i+1
5: ~si ← ti~xi + (1− ti)~xi+1
6: else
7: ti ←

‖~e‖2

2~e · ~ei−1,i
8: ~si ← ti~xi + (1− ti)~xi−1
9: end if
10: print ti and ~si
11: end for

Algorithm Surface-Relaxation precisely de-
scribes how to compute the smoothed mesh S
along with the weights ti needed during interpo-
lation. It remains to interpolate values computed
at ~si (such as the force of surface tension) onto
the original vertices ~xi. Since each vertex can be
moved in either direction along the mesh, we can-
not directly use the values ti as weights for our
interpolation. To illustrate this, consider vertices
~xi and ~xi−1 moved away from each other during
the relaxation step as shown in Figure 5.9a. Let
vSi be the values at surface vertices ~si that we
would like to interpolate to the vertices ~xi to get
values vTi . Note that vTi and vSi can be scalar
or vector values in general (although in our case
they will be force vectors). Then to help express
the interpolation procedure, define two indices:
k(i) representing the vertex that vertex i is moving towards, and n(i) representing the
vertex that vertex i is moving away from as follows:

k(i) =
{
i+ 1 if `i,i+1 > `i−1,i
i− 1 otherwise n(i) =

{
i− 1 if `i,i+1 > `i−1,i
i+ 1 otherwise.

Then we can write the interpolation scheme as

vTi = w

w + w′
vSi + w′

w + w′
vSn(i),

~xi~xi−1

~si~si−1

(1− ti−1)`i−2,i−1 (1− ti)`i,i+1

(a) Vertices are moved apart from each other.

~xi~xi−1

~si
~si−1

ti−1`i−1,i
(1− ti)`i,i+1

(b) Vertices are moved in the same direction.

Figure 5.9: Possible cases considered for linear interpolation weights defined in (5.3).
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where the weights w and w′ are defined as

w =
{
tn(i)`n(i),i if k(n(i)) = i ← the case in Figure 5.9b
(1− tn(i))`k(n(i)),i + `n(i),i otherwise ← the case in Figure 5.9a (5.3)

w′ = (1− ti)`k(i),i,

and this is the only place we use `i+1,i = `i,i+1 interchangeably. In plain words, to find the
value vTi we simply trace along the surface toward the closest values vSn(i) and vSk(i) and use
the arc-length along the path to compute the interpolation weights. If we instead think
about the individual weighted contributions of values vSi to values vTi , it’s not hard to see
an extension of this algorithm to an arbitrary weighted average of the form

vTi = 1
w +∑

j∈N(i) wj
(wvSi +

∑
j∈N(i)

wjv
S
j )

where N(i) is a set of surface vertex indices neighbouring vertex i. This generalization
should be useful for extending this interpolation algorithm to three dimensions.

Finally, collecting the values vTi and vSi into vectors vT ∈ RNSV and vS ∈ RNSV

respectively, allows us to write the interpolation as a matrix operator vT = SvS, where the
interpolation matrix S is naturally defined on each row i by

(
Si,i Si,n(i)

)
=
(

w

w + w′
w′

w + w′

)
. (5.4)

This choice of relaxation conveniently preserves the number of degrees of freedom on
the surface, and provides a straightforward linear interpolation scheme. It is important to
note that contact vertices i connecting the liquid-air surface to the solid-liquid surface are
pinned to their original locations in T , by the constraint ti = 1, in order to preserve correct
behaviour at the contact point.
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Chapter 6

Results

A serial implementation of our method is written in C++ and all simulations were performed
on a 2.3GHz Intel Core i7 machine with 16 GB memory. We use the Eigen library
[Guennebaud et al., 2010] for matrix manipulations and linear solves. In particular, we
used the sparse LU factorization based solver to solve (4.9). The solver incorporates all
elements described in this thesis including semi-Lagrangian velocity advection, MFD pressure
projection, semi-implicit surface tension, and enhanced surface tracking. In addition, we
use a volume control method [Kim et al., 2007] to prevent volume loss, which can otherwise
be observed in highly dynamic or lengthy simulations such as in the top row of Figure 4.1.
It is not hard to see that our choice for surface tracking is particularly sensitive to volume
perturbations since the surface mesh defining the simulation volume is reconstructed at
every step approximating the true moved surface.

In this chapter, we present a number of examples demonstrating the capabilities of
our liquid simulator. The first two sections verify the convergence of our MFD based
pressure projection step subject to Dirichlet and Neumann boundary conditions. The last
section provides a number of examples for qualitative verification of our simulator. All
measurements use the standard SI units (e.g. meters for distance).

6.1 Numerical Results on a Regular Domain

In this section, we test the convergence of the MFD method as applied to the Poisson
problem ∇ ·∇p = ∇ · ~uin on a square domain Ω = [−1, 1]2. We discretize the domain using
a regular grid as in Figure 3.3a. For the following tests in this section, we use an alternative
implementation using the Julia [Bezanson et al., 2012] programming language.
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To test convergence with respect to grid resolution, we will compare a known pressure
solution p to a computed pressure ph, sampled on the nodes of the grid, given an input
velocity field ~uin. In addition we will compute the output velocity uh = uin −Gph field
and compare it to the expected divergence free velocity field ~uout to test for convergence in
the velocity variable. Given a target analytic pressure p we compute its gradient ∇p and
using the target velocity field ~uout we compute ~uin as

~uin = ~uout +∇p (6.1)

It is important to note that the results below merely verify that the MFD method is
identical to the staggered grid approach to solving Poisson’s equation on a regular grid.
As such, we expect second order convergence in both pressure and velocity variables. The
purpose of this section is to demonstrate the correct use of Dirichlet and Neumann boundary
conditions, required to simulate the behaviour of a fluid at the air and solid interfaces
respectively.

For reference, Figures 6.1 and 6.2 illustrate the scalar and vector functions used through-
out for the following numerical tests respectively.

6.1.1 Dirichlet Boundary Conditions

Example 6.1.1. This example verifies convergence of pressure projection subject to pure
homogeneous Dirichlet boundary conditions. We define the test functions for pressure p, as
well as output and input velocities, ~uout and ~uin respectively:

p = 2((1 + x)(1− x)(y + 1)(1− y))3 − 1 (see Figure 6.1a)
~uout = (y,−x)> (see Figure 6.2b)

where ~uin is given as in (6.1). Table 6.1 demonstrates second order convergence of the MFD
scheme in pressure and velocity.

Example 6.1.2. The following test shows convergence of the pressure projection step with
pure non-homogeneous Dirichlet boundary conditions:

p = cos(π(x2 + y2)) (see Figure 6.1b)

~uout =
(

1
2x+ 1√

3
y,

1√
3
x− 1

2y
)>

, (see Figure 6.2a)

Table 6.2 demonstrates second order convergence in pressure and velocity.
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(d) p = (x2 + y2)2 cos(3 atan2(y, x))
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(e) f = 7(x2 + y2) cos(3 atan2(y, x))

Figure 6.1: Four different pressure functions used to test the convergence properties of the MFD
method applied to Poisson’s problem, and one source function (bottom right). Functions on the
bottom row are taken from the work of Johansen and Colella [1998] testing convergence of their
Poisson solver.
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(b) ~uout = (y,−x)>

Figure 6.2: Two different output velocity functions used to test the convergence properties of
the MFD method applied to Poisson’s problem.

Grid ‖p− ph‖∞ Order ‖p− ph‖2 Order ‖p− ph‖1 Order
322 2.66× 10−3 9.01× 10−4 7.24× 10−4

642 6.63× 10−4 2.00 2.25× 10−4 2.00 1.82× 10−4 1.99
1282 1.66× 10−4 2.00 5.63× 10−5 2.00 4.55× 10−5 2.00
2562 4.14× 10−5 2.00 1.41× 10−5 2.00 1.14× 10−5 2.00
5122 1.03× 10−5 2.00 3.52× 10−6 2.00 2.84× 10−6 2.00

10242 2.59× 10−6 2.00 8.79× 10−7 2.00 7.11× 10−7 2.00
20482 6.46× 10−7 2.00 2.20× 10−7 2.00 1.78× 10−7 2.00
40962 1.62× 10−7 2.00 5.50× 10−8 2.00 4.45× 10−8 2.00

Grid ‖uout − uh‖∞ Order ‖uout − uh‖2 Order ‖uout − uh‖1 Order
322 2.20× 10−3 1.24× 10−3 1.37× 10−3

642 5.55× 10−4 1.98 3.11× 10−4 2.00 3.44× 10−4 1.99
1282 1.39× 10−4 2.00 7.78× 10−5 2.00 8.62× 10−5 2.00
2562 3.48× 10−5 2.00 1.94× 10−5 2.00 2.16× 10−5 2.00
5122 8.70× 10−6 2.00 4.86× 10−6 2.00 5.39× 10−6 2.00

10242 2.18× 10−6 2.00 1.22× 10−6 2.00 1.35× 10−6 2.00
20482 5.44× 10−7 2.00 3.04× 10−7 2.00 3.37× 10−7 2.00
40962 1.36× 10−7 2.00 7.60× 10−8 2.00 8.43× 10−8 2.00

Table 6.1: Convergence of pressure ph and velocity uh in pressure projection with homogeneous
Dirichlet boundary conditions for Example 6.1.1.
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Grid ‖p− ph‖∞ Order ‖p− ph‖2 Order ‖p− ph‖1 Order
322 6.98× 10−3 4.75× 10−3 4.09× 10−3

642 1.74× 10−3 2.01 1.18× 10−3 2.01 1.02× 10−3 2.00
1282 4.34× 10−4 2.00 2.95× 10−4 2.00 2.55× 10−4 2.00
2562 1.09× 10−4 2.00 7.38× 10−5 2.00 6.37× 10−5 2.00
5122 2.71× 10−5 2.00 1.84× 10−5 2.00 1.59× 10−5 2.00

10242 6.78× 10−6 2.00 4.61× 10−6 2.00 3.98× 10−6 2.00
20482 1.70× 10−6 2.00 1.15× 10−6 2.00 9.96× 10−7 2.00
40962 4.24× 10−7 2.00 2.88× 10−7 2.00 2.49× 10−7 2.00

Grid ‖uout − uh‖∞ Order ‖uout − uh‖2 Order ‖uout − uh‖1 Order
322 3.07× 10−2 8.40× 10−3 7.09× 10−3

642 7.73× 10−3 1.99 1.98× 10−3 2.08 1.68× 10−3 2.07
1282 1.93× 10−3 2.00 4.81× 10−4 2.04 4.11× 10−4 2.04
2562 4.83× 10−4 2.00 1.18× 10−4 2.02 1.01× 10−4 2.02
5122 1.21× 10−4 2.00 2.94× 10−5 2.01 2.52× 10−5 2.01

10242 3.02× 10−5 2.00 7.32× 10−6 2.01 6.28× 10−6 2.00
20482 7.55× 10−6 2.00 1.83× 10−6 2.00 1.57× 10−6 2.00
40962 1.89× 10−6 2.00 4.56× 10−7 2.00 3.92× 10−7 2.00

Table 6.2: Convergence of pressure and velocity in pressure projection with non-homogeneous
Dirichlet boundary conditions for Example 6.1.2.

6.1.2 Neumann Boundary Conditions

The following two examples deal with Neumann boundary conditions applied to the Poisson
problem in a more general form.

Example 6.1.3. First we would like to test our discrete operators with Poisson’s equation
with homogeneous Neumann boundary conditions:{

∇2p = f in Ω
∇p · n̂ = 0 on ∂Ω.

In particular, we will use the source term f to find the solution p:

f = −π
2

8
(
sin

(
π
2x
)

+ sin
(
π
2y
))

p = 1
2
(
sin

(
π
2x
)

+ sin
(
π
2y
))
. (see Figure 6.1c)

Since we do not have a divergence operator on the right hand side, the MFD discretization
for this problem is slightly different:

DGp = f .

It now depends on the matrix MV (see Appendix A). We can observe second order
convergence in pressure in Table 6.3.
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Grid ‖p− ph‖∞ Order ‖p− ph‖2 Order ‖p− ph‖1 Order
322 8.04× 10−4 4.21× 10−4 3.51× 10−4

642 2.01× 10−4 2.00 1.03× 10−4 2.03 8.45× 10−5 2.05
1282 5.02× 10−5 2.00 2.54× 10−5 2.02 2.07× 10−5 2.03
2562 1.25× 10−5 2.00 6.31× 10−6 2.01 5.14× 10−6 2.01
5122 3.14× 10−6 2.00 1.57× 10−6 2.00 1.28× 10−6 2.01

10242 7.84× 10−7 2.00 3.93× 10−7 2.00 3.19× 10−7 2.00
20482 1.96× 10−7 2.00 9.81× 10−8 2.00 7.96× 10−8 2.00
40962 4.93× 10−8 1.99 2.46× 10−8 1.99 2.00× 10−8 1.99

Table 6.3: Convergence of pressure in Poisson’s equation with homogeneous Neumann boundary
conditions for Example 6.1.3.

Grid ‖p− ph‖∞ Order ‖p− ph‖2 Order ‖p− ph‖1 Order
322 1.11× 10−2 4.92× 10−3 3.94× 10−3

642 2.78× 10−3 2.00 1.19× 10−3 2.05 9.41× 10−4 2.06
1282 6.96× 10−4 2.00 2.93× 10−4 2.02 2.30× 10−4 2.03
2562 1.74× 10−4 2.00 7.26× 10−5 2.01 5.69× 10−5 2.02
5122 4.35× 10−5 2.00 1.81× 10−5 2.01 1.41× 10−5 2.01

10242 1.09× 10−5 2.00 4.51× 10−6 2.00 3.52× 10−6 2.00
20482 2.72× 10−6 2.00 1.13× 10−6 2.00 8.80× 10−7 2.00
40962 6.80× 10−7 2.00 2.81× 10−7 2.00 2.20× 10−7 2.00

Table 6.4: Convergence of pressure in Poisson’s equation with non-homogeneous Neumann
boundary conditions for Example 6.1.4.

Example 6.1.4. Now we want to solve Poisson’s problem with non-homogeneous Neumann
boundary conditions: {

∇2p = f in Ω
∇p · n̂ = gN on ∂Ω.

In particular, we will use the source term f = 7r2 cos(3θ) (see Figure 6.1e) to get the
solution p = r4 cos(3θ) (see Figure 6.1d) with

∇p = r2(4x cos(3θ) + 3y sin(3θ),−3x sin(3θ) + 4y cos(3θ))>,

where r2 = x2 + y2 and θ = atan2(y, x). The Neumann boundary condition is defined by
gN = n̂ · ∇p on the boundary. Note that gN is not defined at the corners of our domain
since the normals there are undefined. Numerically, however, we can enforce vertical and
horizontal boundary conditions simultaneously at the corners. This is made precise in
Appendix A. We can once again observe second order convergence in Table 6.4.

Example 6.1.5. Using the configuration from Example 6.1.4 with

~uout =
(

1
2x+ 1√

3
y,

1√
3
x− 1

2y
)>

, (see Figure 6.2a)

61



Grid ‖p− ph‖∞ Order ‖p− ph‖2 Order ‖p− ph‖1 Order
322 2.36× 10−3 8.63× 10−4 6.14× 10−4

642 5.90× 10−4 2.00 2.08× 10−4 2.06 1.46× 10−4 2.08
1282 1.47× 10−4 2.00 5.09× 10−5 2.03 3.54× 10−5 2.04
2562 3.69× 10−5 2.00 1.26× 10−5 2.01 8.74× 10−6 2.02
5122 9.22× 10−6 2.00 3.13× 10−6 2.01 2.17× 10−6 2.01

10242 2.30× 10−6 2.00 7.81× 10−7 2.00 5.40× 10−7 2.00
20482 5.76× 10−7 2.00 1.95× 10−7 2.00 1.35× 10−7 2.00
40962 1.44× 10−7 2.00 4.88× 10−8 2.00 3.37× 10−8 2.00

Grid ‖uout − uh‖∞ Order ‖uout − uh‖2 Order ‖uout − uh‖1 Order
322 9.20× 10−4 4.10× 10−4 4.46× 10−4

642 2.31× 10−4 2.00 9.95× 10−5 2.04 1.07× 10−4 2.05
1282 5.77× 10−5 2.00 2.45× 10−5 2.02 2.63× 10−5 2.03
2562 1.44× 10−5 2.00 6.07× 10−6 2.01 6.53× 10−6 2.01
5122 3.61× 10−6 2.00 1.51× 10−6 2.01 1.62× 10−6 2.01

10242 9.02× 10−7 2.00 3.77× 10−7 2.00 4.05× 10−7 2.00
20482 2.25× 10−7 2.00 9.43× 10−8 2.00 1.01× 10−7 2.00
40962 5.61× 10−8 2.01 2.36× 10−8 2.00 2.53× 10−8 2.00

Table 6.5: Convergence of pressure and velocity in pressure projection with non-homogeneous
Neumann boundary conditions for Example 6.1.5.

we proceed as previously with non-homogeneous Neumann boundary conditions. Table 6.5
shows second order convergence in pressure and velocity.

6.2 Numerical Results on Irregular Domains

We have shown convergence of pressure and velocity provided by the MFD method on regular
domains. This is not sufficient to simulate liquids with irregular deforming free surfaces, and
gives nothing more than an alternative formulation to the MAC approach on regular grids.
The advantage of using the MFD method is the ability to apply it on irregular domains with
polygonal (or polyhedral in 3D) cells. As noted before, there are theoretical restrictions
on the shapes of these cells, but they are notably weaker than restrictions imposed on
triangulation quality required by finite-element methods or orthogonality constraints on
finite-volume meshes.

From this section onward, we use the full C++ simulator for our tests. This section
merely verifies the validity of our MFD pressure projection step on irregular domains, thus
surface tension and surface tracking are omitted here. To summarize, we use a simple
cut-cell mesh as our discrete domain. The interior of the domain is represented by regular
square cells as shown in Figure 3.3a. The cells on the surface of the domain are computed
using a marching-squares-like algorithm as described in Chapter 5 in detail; see Figure 5.1
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Figure 6.3: Irregular domains used to test convergence of pressure projection.

for a quick review. Of course, to be consistent with the mesh that we use for fluid simulation,
we also collapse small interior edges as described in Section 5.3. We emphasize that this step
is not required to see numerical convergence; it is primarily used to eliminate degenerate
cells generated by a moving surface mesh.

We use two irregular domains to test the convergence of pressure projection using the
MFD approach. The first is a unit circle centered at the origin as in Figure 6.3a. The second,
is a seven arm flower depicted in Figure 6.3b, which, in general, is given by the zero level set
of the function φ = x2 + y2 − r2(1− a sin(n atan2(x, y)))2, where r is the radius, a ∈ [0, 1)
is the amplitude and n ∈ N is the number of arms. For reference, the zero level set of φ can
be computed by the parametrized curve (x(θ), y(θ)) where x(θ) = r(1 − a sin(nθ)) sin(θ)
and y(θ) = r(1 − a sin(nθ)) cos(θ). For the following examples, we take n = 7, a = 0.42
and r = 0.7, where it fits neatly in the unit circle. The flower geometry is often used for
convergence tests on irregular boundaries [Gibou et al., 2002; Popinet, 2003; Johansen and
Colella, 1998]. The following examples test the convergence rate of the pressure and velocity
of the MFD method applied on an irregular domain. We expect second order convergence
in pressure and first order convergence in velocity [Lipnikov et al., 2014].

Example 6.2.1 (Dirichlet Boundary Conditions). We use the test functions from Exam-
ple 6.1.2 to verify convergence of pressure projection, but now on two irregular domains as
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Figure 6.4: Circle (a) and flower (b) convergence test with non-homogeneous Dirichlet boundary
conditions for Example 6.2.1. Using the log-log plots to compare error in velocity ‖u− uh‖ and
pressure ‖p− ph‖ against the grid resolution. We find the order of convergence from the slope of
the line of mean least squares fit. For the circle domain (a) for instance, the order of convergence
is 1.98 for pressure and 0.84 for velocity in the ∞-norm.

previously mentioned. Figure 6.4 shows expected convergence results for Dirichlet boundary
conditions.

Example 6.2.2 (Neumann Boundary Conditions). We use the configuration from Ex-
ample 6.1.4 testing convergence with non-homogeneous Neumann boundary conditions.
Figure 6.5 shows second order convergence in pressure and first order convergence in velocity
as expected.

Mixed boundary conditions are the most general boundary conditions we need to handle
to simulate fluids. The following example verifies the convergence of our Poisson solver
subject to Neumann boundary conditions on ΓN ⊂ ∂Ω and Dirichlet boundary conditions
on ΓD ⊂ ∂Ω.

Example 6.2.3 (Mixed Boundary Conditions). Here we reuse the previous test functions
as in Example 6.1.4. The boundary is split into ΓN = { (x, y)> ∈ ∂Ω : y < 0 } and
ΓD = { (x, y)> ∈ ∂Ω : y ≥ 0 } akin to a liquid exposed to air on the top with a solid
boundary on the bottom. Figure 6.6 shows expected convergence results for mixed boundary
conditions.
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Figure 6.5: Circle (a) and flower (b) convergence test with pure non-homogeneous Neumann
boundary conditions for Example 6.2.2. As in Figure 6.4 we use the log-log plots to compare error
in pressure and velocity. For the circle domain (a) for instance, the order of convergence is 1.96
for pressure and 0.94 for velocity in the ∞-norm.
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Figure 6.6: Circle (a) and flower (b) convergence tests with mixed boundary conditions for
Example 6.2.3. As in Figure 6.4 we use the log-log plots to compare error in pressure and velocity.
For the circle domain (a) for instance, the order of convergence is 1.93 for pressure and 0.95 for
velocity in the ∞-norm.
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6.3 Example Liquid Simulations

This section demonstrates all elements of our fluid simulator. We illustrate pressures
within the liquid using a relative blue-green-red colour scale representing low-medium-
high pressures respectively. We begin with the evolution of two droplets in an off-center
collision as shown in Figure 6.9. This demonstration shows that our method is already able
to simulate droplets pinching off due to Plateau-Rayleigh instability without an explicit
treatment of mesh merging and splitting [Quan et al., 2009]. Topology changes here are
handled automatically since we reconstruct the surface mesh at every time step using the
marching squares templates as described in Chapter 5.

To assess the accuracy of our surface tension model, consider the oscillating droplet
test [Enright et al., 2003]. A droplet with interface defined in polar coordinates by
r = a(1 + s cos(nθ)) is subject to surface tension forces. The frequency of oscillation of
said droplet, ω, is given by ω2 = 6γ/a3. To set the period to π, we let the surface tension
coefficient γ = 2/81 and a = 1/3. Our method correctly maintains an accurate period of
oscillation T = 2π/ω within one or two time steps. For instance, given ∆t = 0.04, the mean
oscillation for the first 25 oscillations is 3.18 for grids of size 642, 1282 and 2562. After a
certain number of oscillations (e.g. 25 in this test) numerical dissipation effects become
significant. We can further demonstrate that the amplitude of oscillation approaches the
true amplitude of 0.35 as we increase the resolution as shown in Figure 6.7.

0 10 20 30 40 50 60
time

0.335

0.340

0.345
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Figure 6.7: Amplitude of an oscillating droplet approaches the expected amplitude as we increase
the grid resolution.
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To show that our method maintains symmetry even in configurations not aligned with
the grid, consider Figure 6.8. Here we demonstrate a lack of grid artifacts and symmetry
preservation on a simulation on a fairly coarse grid and a relatively large time step. Note
that this example (Figure 6.8b) also demonstrates dampening of liquid motion, which can
be attributed to semi-Lagrangian velocity advection.

Next, we demonstrate our treatment of contact angles by dropping a liquid droplet onto
a flat surface in Figures 6.10 and 6.11 (to reduce visual noise, we use a lighter blue color to
indicate areas with lower pressure). More specifically, Figure 6.10 shows a liquid droplet
interacting with a hydrophilic surface. Figure 6.10a shows a surface so hydrophilic that
the liquid covers the entire bottom of the container. Figure 6.10b shows a droplet1 spread
across a portion of the container making a 70◦ angle with the solid surface. Figure 6.11b
shows a hydrophobic surface, that strongly repels liquid, causing it to bounce once. Finally,
Figure 6.11a demonstrates a surface that is neither hydrophilic nor hydrophobic, making a
90◦ angle with the liquid surface.

Lastly, we show the use of irregular boundaries along with one way liquid-solid coupling
using a kinematic solid2 moving through the liquid as depicted in Figure 6.12. To achieve
this we set the velocity of the liquid at the solid boundary to be the same as the velocity of
the solid normal to the boundary. This test demonstrates proper use of non-homogeneous
Neumann boundary conditions as the liquid flow follows the kinematic solid. The lack of
splashes can be attributed to numerical dissipation in semi-Lagrangian advection. Introduc-
ing surface tension and making solids hydrophobic as in Figure 6.13, produces interesting
results, which encompass all components of our liquid simulator. Each time step of the
simulation in Figure 6.13 took a maximum of 0.35 s and an average of 0.29 s. The pressure
projection step in the same test took a maximum of 0.28 s and an average of 0.23 s per time
step, thus it constitutes the majority of computation time as expected.

Since our implementation is restricted to 2D flows, unfortunately the simulations can’t
be compared to realistic water-like liquids. However, our results demonstrate the flexibility
of the simulator and all the features discussed in this thesis. With a 3D implementation
coupled with a less dissipative velocity advection scheme and a careful choice of parameters,
one can start to compare simulated effects with real liquids.

1Out of the four tests, this is the only test in which the droplet did not have some initial downward
velocity to prevent it from touching the sides of the container.

2A kinematic solid is an object with infinite mass that moves along a fixed trajectory.
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1. 2. 3. 4.

5. 6. 7. 8.

(a) The simulation of the first oscillation shown above maintains symmetry on a fairly coarse grid
with large time steps.

(b) Oscillatory motion dampens after the first 4 full oscillations shown above.

Figure 6.8: Oscillating five-arm flower simulated on a 64 × 64 grid with ∆x = 0.04, surface
tension coefficient γ = 0.005, and time step ∆t = 0.04 s.
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Figure 6.9: Off-center collision between two droplets. For this simulation we used a 512× 512 grid with
∆x = 0.005, surface tension coefficient γ = 0.0018, and time step ∆t = 0.007 s. The initial relative velocity
of the droplets is u0 = 0.9 m/s.
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(a) The surface is very hydrophilic making a
contact angle θs = 45◦ with the liquid surface.

(b) The solid surface makes a contact angle
θs = 70◦ with the liquid surface.

Figure 6.10: Droplet falling on two different hydrophilic solid surfaces. For this simulation we used a
128× 128 grid with ∆x = 0.02, surface tension coefficient γ = 0.02, and time step ∆t = 0.01 s. Both figures
show snapshots at times t = 0, 0.1, 0.2, 0.4, 0.6, 1.1, 1.7, 2.0, 2.7, 3.0, 4.0, 4.8 and 15.0 seconds.
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(a) The surface is neither hydrophobic nor hydrophilic,
i.e. the contact angle between the liquid and solid surface
is θs = 90◦. Frames at times t = 0.0, 0.1, 0.2, 0.4, 0.6, 1.3,
2.0, 2.3, 2.5, 2.8, 3.0, and 20.2 seconds are shown.

(b) The solid surface is hydrophobic making an angle θs =
140◦ with the liquid. Frames at times t = 0.0, 0.1, 0.2, 0.4,
0.6, 1.0, 1.3, 1.5 2.0, 2.5, 3.0, and 20.2 seconds are shown.

Figure 6.11: Droplet falling on two different solid surfaces. Here we used the same configuration as in
Figure 6.10. Different frames are shown in each of the above examples to outline features specific to each
case.
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Figure 6.12: A rotating kinematic solid circle is moved through the liquid resting inside a
circular container. This simulation was performed on 256× 256 grid with ∆x = 0.01, and time
step ∆t = 0.02 s. Snapshots were taken on the second for 12 seconds as well as at t = 189.5 s for
the last snapshot.
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Figure 6.13: A rotating kinematic hydrophobic solid circle is moved through a liquid with high
surface tension, resting in a hydrophobic circular container. This simulation was performed on
256× 256 grid with ∆x = 0.01, surface tension coefficient γ = 0.001, and time step ∆t = 0.02 s.
Snapshots were taken on the second for 12 seconds as well as at t = 107.0 s for the last snapshot.
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Chapter 7

Conclusion

Figure 7.1: Original MFD dis-
cretization with pressure samples at
cell centroids, as well as both pressure
samples and velocity components nor-
mal to each face at face centres.

Our goal was to build a unified method to simulate water-
like liquids that allows for seamless coupling with an
accurate surface tension formulation able to handle spe-
cific contact angles. After iterating over numerous proto-
types, we settled on the method presented in this thesis.
Our original approach for pressure projection involved
the MFD method with a slightly different discretization.
More specifically, velocity samples normal to cell faces
were stored at face midpoints and pressures were stored
at cell centroids as well as face midpoints. Figure 7.1 il-
lustrates this discretization on the interior of the domain.
We used a face offsetting technique for moving the surface
through the grid [Jiao, 2007]. This allowed for explicit
control over Dirichlet as well as Neumann boundary con-
ditions since pressure and normal velocity samples were
stored on the surface. In addition, this approach exhib-
ited insensitivity to small angles and small edges in the
mesh. However, we chose to abandon this approach for pressure projection for two reasons.
Primarily, the pressure solve under this discretization was in hydrostatic equilibrium under
gravity, even when the surface contained high frequency features as in Figure 7.2. This
was due to only having pressure samples at face midpoints and not at surface vertices.
Additionally, the simulation was generally over-damped. We conjecture that the lack of
pressure and velocity degrees of freedom on surface vertices caused sharp features to persist
on the surface geometry. Furthermore, the force of surface tension, while computed on
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Figure 7.2: An example of sharp features between grid cells that our original MFD discretization
failed to smooth in the presence of a gravitational force due to a lack of degrees of freedom on
mesh vertices.

surface vertices, did not cause a velocity change on the vertices directly. Instead, the force
was interpolated to the faces, causing a smoothing in the propagation of the surface.

7.1 Future Work

Since our work is ultimately a prototype for a 3D simulation, an immediate extension is a 3D
implementation. Two key areas in which changes would be required to achieve a successful
3D extension are the formula for the mass matrix ME, which is given in [Veiga et al., 2014],
and the handling of the contact curve with clipping. We have already mentioned that our
mesh relaxation technique ought to extend to 3D meshes without much extra work, while
the 3D extension of all other parts of our method follow trivially or are identical. It is
possible to reduce the complexity of clipping within a computational cell if we reduce to
tetrahedral cells near the surface. Note that we still gain flexibility using the MFD method
here since we do not need to tetrahedralize clipped cells before the pressure projection step.

Independently of a 3D implementation, we would like to see this method coupled with
a more ubiquitous advection scheme such as PIC/FLIP or PIC/APIC [Zhu and Bridson,
2005; Jiang et al., 2015]. This would produce more dynamic flows but would also require a
method to extract an explicit surface mesh from a cloud of particles. An existing PIC/FLIP
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fluid solver would typically already have a method for skinning a cloud of particles since it
is often needed for rendering. Alternatively, we could use our current method for surface
mesh evolution, and simply use particles for velocity advection.

Our framework can be extended to support other physical phenomena. For instance high
or variable viscosity could be supported by extending the MFD method to full incompressible
Navier-Stokes. In addition, it would be valuable to handle the no-penetration inequality
type Neumann boundary condition with ~u · n̂ ≥ 0, where n̂ is the outward facing normal to
the solid surface and ~u is the velocity field on the fluid. This boundary condition would
allow liquid to peel off surfaces, which may be desirable for some scenarios of visual interest
(e.g. last frame in Figure 6.12), although this conflicts with true fluid behaviour [Batty
et al., 2007].

7.2 Limitations

As our approach shows potential for extensions, it also presents a few difficulties. For
instance, one major flaw of the semi-implicit surface tension scheme is the artificial defor-
mation it introduces to a circular liquid surface moving through the grid as shown on the
top of Figure 5.2. The surface energy estimate for the predicted mesh configuration at the
next time step is coupled with the incompressibility solve for the mesh configuration at
the current time step. This mismatch can be seen in equation 4.7, and is the culprit of the
artificial deformation in the moving droplet. Fully implicit schemes [Zheng et al., 2015]
have been introduced to alleviate this issue, but are currently fairly costly to compute.

Other issues stem from the surface tracking nature in our approach. Primarily the liquid
surface incident to a solid boundary can produce very shallow angles. These angles may
cause the liquid to get “stuck” to the surface of the solid. Moreover, when coming to a rest,
the simulation can be unstable at times when the resting point of the surface mesh lies
close to the intersection of the solid surface and grid edge. We may be able to resolve such
instabilities by introducing extra degrees of freedom at the contact vertices, or by using an
adaptive higher order MFD discretization in those areas akin to the work of Edwards and
Bridson [2014].
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Appendix A

MFD Discretization of the Poisson
Problem

In this appendix, we will cover the missing details behind the mimetic discretization in
Section 3.1. Consider once again Poisson’s problem presented in (2.4). We mentioned in
Section 3.1 that the MFD framework allows us to discretize this PDE directly using our
discrete divergence and gradient operators in equation 3.7. Unfortunately, this framework
does not describe a general way to discretize boundary conditions. Thus we need a closer look
at the continuous PDE subject to boundary conditions, which is also called a boundary value
problem (BVP). In our case, this is just the PDE (2.4) subject to boundary conditions (2.5),
reiterated once more for reference:

∆t∇ · ∇p = ∇ · ~u∗∗ in Ω (A.1a)
p = fD on ΓD (A.1b)

n̂ ·∆t∇p = n̂ · ~u∗∗ − fN on ΓN . (A.1c)

This BVP is a specialization of the more general form of the Poisson BVP:

∇ · ∇p = f in Ω (A.2a)
p = gD on ΓD (A.2b)

n̂ · ∇p = gN on ΓN , (A.2c)

where f = ∆t−1∇ · ~u∗∗, gD = fD, and gN = ∆t−1(n̂ · ~u∗∗ − fN) gives the original BVP
(A.1). We will use the general Poisson BVP here to simplify our exposition.
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Before we continue, it will be useful to classify a specific space of functions to make
our exposition precise. First, consider the space of square integrable scalar functions on Ω
defined by

L2(Ω) =
{
f : Ω→ R

∣∣∣∣ ∫
Ω
|f |2 <∞

}
.

Then collect all such functions with square integrable partial derivatives:

H1(Ω) =
{
f ∈ L2(Ω)

∣∣∣∣∣ ∂f∂x, ∂f∂y ∈ L2(Ω)
}
.

The space H1 is a Sobolev space, and it characterizes solutions to the Poisson BVP. We
will mainly be interested in functions from H1 with a fixed value on the Dirichlet boundary
ΓD. That is for a particular function g : ΓD → R, define

H1
g =

{
f ∈ H1(Ω)

∣∣∣ f |ΓD = g
}
.

These definitions will help us describe the duality of the continuous differential operators
and write down the weak form of the Poisson BVP that we will discretize.

Indeed, any solution p ∈ H1
gD to (A.2) also solves∫

Ω
∇q · ∇p =

∫
Ω
qf +

∫
ΓN
qgN ∀q ∈ H1

0 . (A.3)

This is precisely the weak form of (A.2) as it imposes weaker constraints on the solution.
Not unlike other methods for solving elliptic PDEs, we will focus on finding weak solutions
by discretizing equation A.3. We will use discrete mimetic inner products to emulate
continuous inner products.

A.1 Continuous Framework

Define two continuous inner products on the space of vector and scalar functions as follows
[Hyman and Shashkov, 1998]. Let ~v, ~w : Ω→ R2 be two vector functions, and q, r : Ω→ R
two scalar functions, then define inner products

(~v, ~w) =
∫

Ω
~u · ~w (A.4)

(q, r) =
∫

Ω
qr +

∮
∂Ω
qr. (A.5)
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It will be clear which inner product is used by the dimensionality of the function codomain.
If we extend the divergence operator to the boundary as

D ~v =
{
∇ · ~v in Ω
−~v · n̂ on ∂Ω . (A.6)

Now to draw the duality between the continuous gradient and extended divergence operators,
take a scalar function q ∈ H1 and a vector function ~v as before, and consider the following
integration by parts formula:∫

Ω
∇q · ~v =

∮
∂Ω
q(~v · n̂)−

∫
Ω
q∇ · ~v. (A.7)

Using the inner product notation, we can rewrite this simply as

(∇q, ~v) = −(q,D ~v) (A.8)

giving us the expected duality relationship D = −∇∗, which we aim to preserve in our
discretization. If we also express the weak formulation (A.3) in terms of these inner products:

(∇q,∇p) = (q, F ), (A.9)

where naturally we define

F =
{
f in Ω
gN on ∂Ω , (A.10)

then by duality, (∇q,∇p) = −(q,∇∗∇p), where ∇∗∇ is symmetric and nonnegative [Hyman
and Shashkov, 1998]. Preserving this property in the discrete Laplacian will allow us to use
efficient iterative solvers like preconditioned conjugate gradient.

In the next section, we will construct the discrete scalar inner product to mimic (A.5).
This will provide sufficient machinery to discretize the Poisson problem with Neumann
boundary conditions.

A.2 Discrete Framework

We have covered Dirichlet boundary conditions on the discrete system in Chapter 3, so our
goal now is to encode Neumann boundary conditions into the discrete framework. We will
reuse the notation from Section 3.1 used to describe discrete quantities. First, we discretize
the scalar inner product (A.5).
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Figure A.1: Discretization of a
function g : ∂Ω → R, that has
the form g = ~v · n̂ for some vector
field ~v defined on ∂Ω and n̂ is the
outward unit normal to the liquid
surface. g2i and g2i+1 encode the
components of g in each normal
direction.

Naturally we will discretize scalar functions over the
domain using values sampled at mesh nodes as pressure is
in Section 3.1. Thus any two scalar functions q, r : Ω→ R
as before, are discretized with vectors q, r ∈ RNV where
qn = q(~xn) and rn = r(~xn) at each node n on the mesh.
In addition, to encode surface integrals into our inner
product, scalar functions g, h : ∂Ω→ R representing flow
through the boundary, are discretized by vectors g,h ∈
R2NSV , where g2i and g2i+1 (resp. h2i and h2i+1) represent
the flow of g (resp. h) normal to edges ei−1,i and ei,i+1
incident to vertex i respectively as depicted in Figure A.1.
Splitting the flux at each vertex into two components
like this will allow us to approximate an integral over the
partial boundary, for instance ΓN ⊂ ∂Ω. This kind of
flexibility is needed when discretizing the Poisson problem
with mixed boundary conditions. Then we define vectors
q̄> = (q>,g>) and r̄> = (r>,h>) containing interior and
surface values. We will follow in a similar manner as
(3.13) to define the discrete inner product as a sum of
cell-based and edge-based inner products:

〈q̄, r̄〉V̄ = 〈q, r〉V + 〈g,h〉SV
=
∑
c

〈qc, rc〉V,c +
∑
e∈∂Ω
〈ge,he〉SV,e

=
∑
c

q>c MV,crc +
∑
e∈∂Ω

g>e MSV,ehe ∀q̄, r̄ ∈ RNV +NSV ,

where qc and rc are the vectors q and r restricted to the nodes of cell c, while ge and he
are the vectors g and h restricted to the edge e. Local inner product matrices MSV,e and
MV,c will define the global inner product, which can be written in terms of the global inner
product matrix M̄V as

〈q̄, r̄〉V̄ = q̄>
(

MV 0
0 MSV

)
r̄ = q̄>M̄V r̄, (A.11)

where MV is precisely the inner product matrix from (3.4). Our goal is to approximate
the integrals from the continuous inner product using this discrete inner product as
〈q̄, r̄〉V̄ ≈ (q, r). Starting with the local cell integral we approximate

〈qc, rc〉V,c ≈
∫
c
qr. (A.12)
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We use a simple quadrature rule to discretize this integral as∫
c
qr ≈

∑
n∈∂c

wc,nqnrn,

where n ∈ ∂c collects all nodes n on the boundary of cell c. The weights wc,n can be taken
from the centroid formula

~xc =
∑
n∈∂c

wc,n~xn.

The resulting matrix MV is diagonal and if the weights are all positive, then MV is also
positive definite. The path integral from (A.5) is approximated on surface edge e = ei,i+1
for functions g and h as follows∫

e
gh ≈ 〈ge,he〉SV,e = `i,i+1

2 (g2i+1h2i+1 + g2i+2h2i+2). (A.13)

This discretization generates a diagonal positive definite matrix MSV .
Since ultimately we would like to mimic the integration by parts formula (A.7), it could

be useful to extend the discrete divergence operator to mimic the extended continuous
divergence operator (A.6). Following in this manner, it may be possible to construct a
mimetic framework including a discrete divergence and gradient operators that maintain
duality and extend to the boundary. However, we will refrain from doing so because at
this point we have sufficient machinery to discretize the Poisson problem with second order
convergence.

We are now ready to discretize our weak BVP (A.3). We will assume pure Neumann
boundary conditions, so the boundary integral in (A.3) covers all of ∂Ω. Substituting the
discrete inner products (A.11) and (3.5) into (A.9) forms the discrete BVP: Find p ∈ RNV

such that
q>G>MEGp = q>MV f + q>M̃SV gN ∀q ∈ RNV ,

where f samples the function f at each mesh node, gN samples the function gN on mesh
nodes on ∂Ω as usual, and M̃ is an RNV × RNSV extension of MSV :

M̃SV =
(

0
MSV

)

defined for convenience. Furthermore, since q is arbitrary, we can reduce this to

G>MEGp = MV f + M̃SV gN .
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This is precisely the discretization used in Example 6.1.4, which demonstrates second order
convergence. For completeness we will derive the weak formulation for our specific BVP
(A.1). The solutions to the weak form of (A.1) must satisfy∫

Ω
q∇ · (~u∗∗ −∆t∇p) = 0 ∀q ∈ H1

0 .

writing this as ∫
Ω
q∆t∇ · ∇p =

∫
Ω
q∇ · ~u∗∗ ∀q ∈ H1

0 ,

and using the integration by parts formula (A.7) on both sides allows us to express this
integral in terms we know how to discretize:∫

∂Ω
q(n̂ ·∆t∇p)−∆t

∫
Ω
∇q · ∇p =

∫
∂Ω
q(n̂ · ~u∗∗)−

∫
Ω
∇q · ~u∗∗ ∀q ∈ H1

0 .

Substituting in Neumann boundary conditions n̂ ·∆t∇p = n̂ · ~u∗∗ − fN , we get∫
∂Ω
q(n̂ · ~u∗∗)−

∫
∂Ω
qfN −

∫
Ω
∇q · ∇p =

∫
∂Ω
q(n̂ · ~u∗∗)−

∫
Ω
∇q · ~u∗∗ ∀q ∈ H1

0 ,

which reduces to ∫
Ω
∇q · ∇p =

∫
Ω
∇q · ~u∗∗ −

∫
∂Ω
qfN ∀q ∈ H1

0 .

We know know how to discretize the boundary integral from (A.13) and the interior integral
using (3.5) as usual:

q>∆tG>MEGp = q>G>MEu∗∗ − q>∂ MSV fN (A.14)

for all q ∈ RNV and q∂ ∈ RNSV where q∂ is zero for all edges not subject to Neumann
boundary conditions (this follows from the definition of H1

0 ). The vector q∂ comes from
the extension of q ∈ RNV to the boundary as described in the beginning of this section.
The restriction on q∂ can be encoded into the matrix M̃SV , which can be written as L
defined in (3.27). Furthermore, fN is defined by a prescribed boundary velocity normal to
the liquid-solid boundary as in (2.5b). Given a velocity field ~v on the surface of the liquid,
discretized by v ∈ R2NSV using Notation 3.2.1, we can write fN = Nv where N is defined
as in (3.28). Thus we can write (A.14) as

q>∆tG>MEGp = q>G>MEu∗∗ − q>LNv

where q is arbitrary, which further yields

∆tG>MEGp = G>MEu∗∗ − LNv.
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This is precisely the equation in (3.26). We demonstrate second order convergence of this
method on irregular boundaries in Section 6.2.

Our discretization of the Poisson problem is not unlike the linear Galerkin method
for simplicial meshes. In fact, the MFD method has been unified with higher order
discretizations in a Galerkin framework called the virtual element method [Beirão da Veiga
et al., 2013].
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Appendix B

Code to Compute the Energy
Hessian

We use a symbolic computation package [SymPy Development Team, 2014] to compute the
energy Hessian. This is done in the Julia programming language [Bezanson et al., 2012]
with a convenience wrapper for SymPy [Verzani, 2015]. Note that for simplicity we exclude
the constant factor γ from the computations since it plays no role in the derivatives.

using SymPy
using LaTeXStrings
xi = symbols("x_i", real=true)
yi = symbols("y_i", real=true)
xip1 = symbols("x_{i+1}", real=true)
yip1 = symbols("y_{i+1}", real=true)
xim1 = symbols("x_{i-1}", real=true)
yim1 = symbols("y_{i-1}", real=true)

# Definition of surface area gradient (computed by hand) at node i
lp = sqrt((xi-xip1)^2+(yi-yip1)^2) # length of next edge
lm = sqrt((xi-xim1)^2+(yi-yim1)^2) # length of previous edge
fix = (xip1-xi)/lp - (xi-xim1)/lm # force x component
fiy = (yip1-yi)/lp - (yi-yim1)/lm # force y component

# Compute Hessian Stencil
Dixx = simplify(diff(fix,xi))
Dixy = simplify(diff(fiy,xi))

Diyx = simplify(diff(fix,yi)) # expect to be the same as Dixy
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Diyy = simplify(diff(fiy,yi))

Dip1xx = simplify(diff(fix,xip1))
Dip1xy = simplify(diff(fiy,xip1))

Dip1yx = simplify(diff(fix,yip1)) # expect to be the same as Dip1xy
Dip1yy = simplify(diff(fiy,yip1))

assert(Diyx == Dixy)
assert(Dip1xy == Dip1yx)

# Prepare results for display
D(i,x,y) = "\\frac{\\partial f_{$(i)}^$(x)}{\\partial $(y)_{$(i)}}"
res = [

"\$ $(D("i","x","x"))=$(SymPy.latex(Dixx))\$",
"\$ $(D("i","x","y"))=$(D("i","y","x")) = $(SymPy.latex(Dixy))\$",
"\$ $(D("i","y","y"))=$(SymPy.latex(Diyy))\$",
"\$ $(D("i+1","x","x"))=$(SymPy.latex(Dip1xx))\$",
"\$ $(D("i+1","x","y"))=$(D("i+1","y","x")) = $(SymPy.latex(Dip1xy))\$",
"\$ $(D("i+1","y","y"))=$(SymPy.latex(Dip1yy))\$",

]

# Display results
for str in res

display(LaTeXString(str))
end

This code generates the raw component-wise partial derivatives of the surface tension
force needed to build the energy Hessian. For simplicity of exposition we simplify the out-
put by expressing it in terms of edge vector components ~ei = (exi , e

y
i ) with the following code:

# Express the above derivatives in terms of edge vector components
eix = symbols("{e^x_i}", real=true)
eiy = symbols("{e^y_i}", real=true)
ein = symbols("{\\|{e_{i}}\\|}", positive=true)
eim1x = symbols("{e^x_{i-1}}", real=true)
eim1y = symbols("{e^y_{i-1}}", real=true)
eim1n = symbols("{\\|{e_{i-1}}\\|}", positive=true)
function sim(f)

f = subs(subs(subs(f,xip1-xi,eix),yip1-yi,eiy),eix^2+eiy^2,ein^2)
f = subs(subs(subs(f,xi-xim1,eim1x),yi-yim1,eim1y),eim1x^2+eim1y^2,eim1n^2)
simplify(f)

end
res = [
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"\$ $(D("i","x","x")) = $(SymPy.latex(sim(Dixx)))\$",
"\$ $(D("i","x","y")) = $(D("i","y","x")) = $(SymPy.latex(sim(Dixy)))\$",
"\$ $(D("i","y","y")) = $(SymPy.latex(sim(Diyy)))\$",
"\$ $(D("i+1","x","x")) = $(SymPy.latex(sim(Dip1xx)))\$",
"\$ $(D("i+1","x","y")) = $(D("i+1","y","x")) = $(SymPy.latex(sim(Dip1xy)))\$",
"\$ $(D("i+1","y","y")) = $(SymPy.latex(sim(Dip1yy)))\$",

]
for str in res

display(LaTeXString(str))
end

This code generates the following expressions for surface tension force derivatives:

∂fxi
∂xi

= − 1
‖~ei‖

+ exi
2

‖~ei‖3 −
1

‖~ei−1‖
+ exi−1

2

‖~ei−1‖3

∂fxi
∂yi

= ∂f yi
∂xi

= exi e
y
i

‖~ei‖3 + exi−1e
y
i−1

‖~ei−1‖3

∂f yi
∂yi

= − 1
‖~ei‖

+ eyi
2

‖~ei‖3 −
1

‖~ei−1‖
+ eyi−1

2

‖~ei−1‖3

∂fxi+1
∂xi+1

= eyi
2

‖~ei‖3

∂fxi+1
∂yi+1

= ∂f yi+1
∂xi+1

= − exi e
y
i

‖~ei‖3

∂f yi+1
∂yi+1

= exi
2

‖~ei‖3 .

Note that due to the symmetry and sparsity of the Hessian as seen in (4.11), these are
the only derivatives we need to compute to form the stencil in (4.12).
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